Skip to main content
Log in

Design specifications for cellular regulation

  • Original Paper
  • Published:
Theory in Biosciences Aims and scope Submit manuscript

Abstract

A critical feature of all cellular processes is the ability to control the rate of gene or protein expression and metabolic flux in changing environments through regulatory feedback. We review the many ways that regulation is represented through causal, logical, and dynamical components. Formalizing the nature of these components promotes effective comparison among distinct regulatory networks and provides a common framework for the potential design and control of regulatory systems in synthetic biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alon U (2007) Network motifs: theory and experimental approaches. Nat Rev Genet 8:450–461

    Article  CAS  PubMed  Google Scholar 

  • Armstrong M, Sappington DEM (2007) Recent developments in the theory of regulation. In: Armstrong M, Sappington DEM (eds) Handbook of Industrial Organization, vol III, North Holland, chap 27, pp 1557–1700

  • Arnold C, Stadler PF, Prohaska SJ (2013) Chromatin computation: epigenetic inheritance as a pattern reconstruction problem. J Theor Biol 336:61–74

    Article  CAS  PubMed  Google Scholar 

  • Ay N, Polani D (2008) Information flows in causal networks. Adv Complex Syst 11(01):17–41

    Article  Google Scholar 

  • Badeaux AI, Shi Y (2013) Emerging roles for chromatin as a signal integration and storage platform. Nat Rev Mol Cell Biol 14(4):211–224

    Article  CAS  PubMed Central  Google Scholar 

  • Barbieri M (2015) Code biology. Springer, Heidelberg

    Book  Google Scholar 

  • Bergman A, Siegal ML (2003) Evolutionary capacitance as a general feature of complex gene networks. Nature 424:549–552

    Article  CAS  PubMed  Google Scholar 

  • Bolouri H, Davidson EH et al. (2002) Modeling transcriptional regulatory networks. BioEssays 24(12):1118–1129

    Article  CAS  PubMed  Google Scholar 

  • Buchler NE, Gerland U, Hwa T (2003) On schemes of combinatorial transcription logic. Proc Natl Acad Sci 100(9):5136–5141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen T, Dent SY (2014) Chromatin modifiers and remodellers: regulators of cellular differentiation. Nat Rev Genet 15(2):93–106

    Article  CAS  PubMed  Google Scholar 

  • Chin JW (2012) Reprogramming the genetic code. Science 336:428–429

    Article  CAS  PubMed  Google Scholar 

  • Churaev RI, Prokudina EI (1989) Modelling of the regulatory system of tryptophan biosynthesis using generalized threshold models. Genetika 25(3):535–44

    CAS  PubMed  Google Scholar 

  • Darwiche A (2009) Modeling and Reasoning with Bayesian Networks. Cambridge Univ. Press, Cambridge

    Book  Google Scholar 

  • Davidson EH (2006) The Regulatory Genome: Gene Regulatory Networks in Development and Evolution. Academic Press

  • Davidson EH, Erwin DH (2006) Gene regulatory networks and the evolution of animal body plans. Science 311:796–800

    Article  CAS  PubMed  Google Scholar 

  • Dion MF, Altschuler SJ, Wu LF, Rando OJ (2005) Genomic characterization reveals a simple histone h4 acetylation code. Proc Natl Acad Sci USA 102(15):5501–5506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Djuranovic S, Nahvi A, Green R (2011) A parsimonious model for gene regulation by miRNAs. Science 331:550–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmann GW (1975) A theory of regulation and self-nonself discrimination in an immune network. Eur J Immunol 5:638–647

    Article  CAS  PubMed  Google Scholar 

  • Inada T, Kimata K, Aiba H (1996) Mechanism responsible for glucose-lactose diauxie in Escherichia coli: challenge to the cAMP model. Genes Cells 1:293–301

    Article  CAS  PubMed  Google Scholar 

  • Jacob F, Monod J (1961) Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3(3):318–356

    Article  CAS  PubMed  Google Scholar 

  • Krebs J, Lewin B, Goldstein E, Kilpatrick S (2014) Lewin’s GENES XI. Jones & Bartlett Learning, Burlington

    Google Scholar 

  • Krishna R, Ramachandran P (1975) Analysis of diffusional effects in immobilized two-enzyme systems. J Appl Chem Biotechnol 25:623–640

    Article  CAS  Google Scholar 

  • MacDonald CT, Gibbs JH, Pipkin AC (1968) Kinetics of biopolymerization on nucleic acid templates. Biopolymers 6(1):1–5. doi:10.1002/bip.1968.360060102

    Article  CAS  PubMed  Google Scholar 

  • Materna SC, Davidson EH (2007) Logic of gene regulatory networks. Curr Opin Biotechnol 18(4):351–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mattick JS (2004) The hidden genetic program of complex organisms. Sci Am 291:60–67

    Article  PubMed  Google Scholar 

  • Neumann H (2012) Rewiring translation—genetic code expansion and its applications. FEBS Lett 586:2057–2064

    Article  CAS  PubMed  Google Scholar 

  • Prohaska SJ, Stadler PF, Krakauer DC (2010) Innovation in gene regulation: the case of chromatin computation. J Theor Biol 265:27–44

    Article  CAS  PubMed  Google Scholar 

  • Silva-Rocha R, de Lorenzo V (2008) Mining logic gates in prokaryotic transcriptional regulation networks. FEBS Letters 582(8):1237–1244

    Article  CAS  PubMed  Google Scholar 

  • Smith E, Krishnamurthy S, Fontana W, Krakauer D (2011) Nonequilibrium phase transitions in biomolecular signal transduction. Phys Rev E 84(051):917

    Google Scholar 

  • Spivak DI (2014) Category theory for the sciences. MIT Press, Cambridge

    Google Scholar 

  • Wagner A (1996) Does evolutionary plasticity evolve? Evolution 50:1008–1023

    Article  Google Scholar 

  • West M, Harrison J (2006) Bayesian forecasting and dynamic models. Springer Series in Statistics. Springer New York, New York

    Google Scholar 

Download references

Acknowledgements

The authors thank the John Templeton Foundation for funding this research with the Grant “Origins and Evolution of Regulation in Biological Systems”—ID: 24332. The opinions expressed in this publication are those of the author(s) and do not necessarily reflect the views of the John Templeton Foundation. This work was partially funded by the the German Federal Ministry of Science (0316165C) as part of the e:Bio initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter F. Stadler.

Additional information

D. C. Krakauer, L. Müller, S. J. Prohaska and P. F. Stadler contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krakauer, D.C., Müller, L., Prohaska, S.J. et al. Design specifications for cellular regulation. Theory Biosci. 135, 231–240 (2016). https://doi.org/10.1007/s12064-016-0239-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12064-016-0239-5

Keywords

Navigation