Skip to main content
Log in

Mineralogy and geochemistry of the sediments in rivers along the east coast of India: Inferences on weathering and provenance

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Research highlights

The clay fraction of the sediments in 15 rivers along the east coast of India showed

  • Mixed-mineral assemblages in accordance with dominant geology and chemical weathering.

  • High CIA and PIA, and low Ca, K, Na and Sr values indicating moderate to intense chemical weathering on source rocks.

  • Enriched transition metals and depleted high-field strength elements supporting dominance of mafic component.

  • Ratio–ratio plots of trace metals indicating intermediate provenance between mafic and felsic sources.

Abstract

The clay fraction of sediments in the lower reaches of 15 rivers along the east coast of India showed high kaolinite followed by illite and smectite for the rivers dominantly draining the Archaean–Precambrian Terrain (APT), high smectite followed by illite and kaolinite for those draining the Deccan Trap Volcanic Terrain (DVT) and, high illite followed by kaolinite, smectite or chlorite for those draining through Mixed-Lithology Terrain (MLT). The CIA (Chemical Index of Alteration) and PIA (Plagioclase Index of Alteration) values, depletion of Ca, K, Na and Sr and enrichment of Al, Fe and Ti, high Rb/Sr and Th/U ratios of sediments relative to the Upper Continental Crust indicate moderate to intense chemical weathering on source rocks. The average composition of clays exhibits slight enrichment of Fe, Mg, Sc, V, Co, Cr and Ni and depletion of Nb, Zr, Hf, Y and Ta relative to the Post-Archaean average Australian Shale. The Cu, Zn and Pb contents were in the range ‘significantly polluted to moderately polluted’ in APT- and DVT-sediments. The plots of TiO2 vs. Fe2O3+MgO, Th/Sc vs. Sc and La–Th–Sc showed sediment composition intermediate between granite and basalt, while the plots of TiO2 vs. Zr, Th vs. Sc and V–Ni–Th indicate intermediate provenance between mafic and felsic sources. The mineralogy of the sediments indicates mixed sources, but their chemical composition is affected by weathering and the provenance is intermediate between mafic and felsic sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Absar N and Sreenivas B 2015 Petrology and geochemistry of greywackes of the ~1.6 Ga Middle Aravalli Supergroup, northwest India: Evidence for active margin processes; Int. Geol. Rev. 57 134–158, http://dx.doi.org/10.1080/00206814.2014.999355.

    Article  Google Scholar 

  • Armstrong-Altrin J S, Nagarajan R, Madhavaraju J, Rosalez-Hoz L, Yong I L L, Balaram V, Cruz-Martınez A and Avila-Ramırez G 2013 Geochemistry of the Jurassic and Upper Cretaceous shales from the Molango Region, Hidalgo, eastern Mexico: Implications for source-area weathering, provenance, and tectonic setting; C. R. Geosci. 345 185–202.

  • Badawy W, Duliu O G, Frontasyeva M V and El-Samman H 2019 Distribution of major and trace elements in soil and sediments along the Nile River and Delta (Egypt): A Case Study; In: Petrogenesis and Exploration of the Earth’s Interior, Advances in Science, Technology & Innovation (eds) Doronzo D M et al., Springer Nature Switzerland AG (2019), https://doi.org/10.1007/978-3-030-01575-6_22.

  • Balakrishnan S and Rajamani V 1987 Geochemistry and petrogenesis of granite gneisses around the Kolar Schist Belt, south India: Petrogenetic constraints for the evolution of the crust in the Kolar area; J. Geol. 95 219–240.

    Article  Google Scholar 

  • Bayon G, Toucanne S, Skonieczny C, Andre L, Bermell S, Cheron S, Dennielou B, Etoubleau J, Freslon N, Gauchery T, Germain Y, Jorry S J, Menot G, Monin L, Ponzevera E, Rouget M L, Tachikawa K and Barrat J A 2015 Rare earth elements and neodymium isotopes in world river sediments revisited; Geochim. Cosmochim. Acta 170 17–38.

  • Bhatia M R 1983 Plate-tectonics and geochemical composition of sandstones; J. Geol. 91 611–627.

    Article  Google Scholar 

  • Bhattacharya S, Chaudary A K and Basei M 2012 Original nature and source of Khondalites in the Eastern Ghats province, India; In: Palaeoproterozoic of India (eds) Mazumder R and Saha D, Geol. Soc. London, Spec. Publ. 365 147–159, http://dx.doi.org/10.1144/SP365.8.

  • Bhuiyan M A H, Rahman M J J, Dampare S B and Suzuki S 2011 Provenance, tectonics and source weathering of modern fluvial sediments of the Brahmaputra–Jamuna River, Bangladesh: Inference from geochemistry; J. Geochem. Explor. 111 113–137.

    Article  Google Scholar 

  • Biscaye P E 1965 Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans; Geol. Soc. Am. Bull. 76 803–832.

    Article  Google Scholar 

  • Biswas A N 1985 Geohydro-morphometry of Hooghly estuary; J. Inst. Eng. (India) 66 61–73.

    Google Scholar 

  • Bock B, McLennan S M and Hanson G N 1998 Geochemistry and provenance of the Middle Ordovician Austin Glen Member (Normanskill Formation) and the Taconian Orogeny in New England; Sedimentology 45 635–655.

    Article  Google Scholar 

  • Borges J, Huh Y, Moon S and Noh H 2008 Provenance and weathering control on river bed sediments of the eastern Tibetan Plateau and the Russian Far East; Chem. Geol. 254 52–72.

    Article  Google Scholar 

  • Bracciali L, Marroni M, Pandolfi L, Rocchi S, Arribas J, Critelli S and Johnsson M J 2007 Geochemistry and petrography of Western Tethys Cretaceous sedimentary covers (Corsica and Northern Apennines): from source areas to configuration of margins; Geol. Soc. Am., Spec. Paper 420 73–93.

  • Chakrabarti R, Basu A R and Chakraborty A 2007 Trace element and Nd-isotopic evidence for sediment sources in the mid-Proterozoic Vindhyan Basin, central India: Precamb. Res. 159 260–274, https://doi.org/10.1016/j.precamres.2007.07.003.

  • Chamley H 1989 Clay Sedimentology; Springer, New York, 623p.

    Book  Google Scholar 

  • Chaudhuri A, Banerjee S and Chauhan G 2020 Compositional evolution of siliciclastic sediments recording the tectonic stability of a pericratonic rift: Mesozoic Kutch Basin, western India; Mar. Petrol. Geol. 111 476–495.

    Article  Google Scholar 

  • Chetelat B, Liu Conq-Qiang, Wang Q and Zhang G 2013 Assessing the influence of lithology on weathering indices of Changjiang river sediments; Chem. Geol. 359 108–115.

    Article  Google Scholar 

  • Condie K C 2005 Earth as an evolving planetary system; Amsterdam; Elsevier Academic Press, 447p.

  • Cox R, Lowe D R and Cullers R L 1995 The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States; Geochim. Cosmochim. Acta 59 2919–2940.

    Article  Google Scholar 

  • Cullers R 1988 Mineralogical and chemical changes of soil and stream sediment formed by intense weathering of Danburg granite, Georgia, U.S.A.; Lithos 21 301–314.

  • Cullers R 2000 The geochemistry of shales, siltstones and sandstones of Pennsylvanian–Permian age, Colorado, USA: Implications for provenance and metamorphic studies; Lithos 51 181–203.

    Article  Google Scholar 

  • Cullers R L 2002 Implications of elemental concentrations for provenance, redox conditions, and metamorphic studies of shales and limestones near Pueblo, Co, USA; Chem. Geol. 191 305–327.

    Article  Google Scholar 

  • Cullers R L, Chaudhuri S, Kilbane N and Koch R 1979 Rare-earths in size fractions and sedimentary rocks of Pennsylvanian-Permian age from the mid-continent of the USA; Geochim. Cosmochim. Acta 43 1285–1302.

    Article  Google Scholar 

  • Dalai T K, Krishnaswami S and Sarin M M 2002 Major ion chemistry in the headwaters of the Yamuna river system: Chemical weathering, its temperature dependence and CO2 consumption in the Himalaya; Geochim. Cosmochim. Acta 66 3397–3416.

    Article  Google Scholar 

  • Das A, Krishnaswami S, Sarin M M and Pande K 2005 Chemical weathering in the Krishna Basin and Western Ghats of the Deccan Traps, India: Rate of basalt weathering and their controls; Geochim. Cosmochim. Acta 69 2067–2084.

    Article  Google Scholar 

  • Fatima S and Khan M S 2012 Petrographic and geochemical characteristics of Mesoproterozoic Kumbalgarh clastic rocks, NW Indian shield: Implications for provenance, tectonic setting, and crustal evolution: Int. Geol. Rev. 54 1113–1144, https://doi.org/10.1080/00206814.2011.623032.

    Article  Google Scholar 

  • Fedo C M, Nesbitt H W and Young G M 1995 Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for weathering conditions and provenance; Geology 23 921–924.

    Article  Google Scholar 

  • Fedo C M, Eriksson K A and Krogstad E J 1996 Geochemistry of shales from the Archaean (~3.0 Ga) Buhwa greenstone belt, Zimbabwe: Implications for provenance and source-area weathering; Geochim. Cosmochim. Acta 60 1751–1763, https://doi.org/10.1016/0016-7037(96)00058-0.

    Article  Google Scholar 

  • Folk R L 1968 Petrology of the Sedimentary Rocks; Hemphills, Austin, Texas, 170p.

    Google Scholar 

  • Fralick P W and Kronberg B I 1997 Geochemical discrimination of clastic sedimentary rock from major element chemistry of lutites; Nature 299 715–717.

    Google Scholar 

  • Garver J I, Royce P R and Smick T A 1996 Chromium and nickel in shale of the Taconic foreland: A case study for the provenance of fine-grained sediments with an ultramafic source; J. Sedim. Res. 100 100–106.

    Google Scholar 

  • Garzanti E, Andò S, France-Lanord C, Vezzoli G, Censi P, Galy V and Najman Y 2010 Mineralogical and chemical variability of fluvial sediments: 1. Bedload sand (Ganga–Brahmaputra, Bangladesh); Earth Planet. Sci. Lett. 299 368–381.

    Article  Google Scholar 

  • Garzanti E, Andó S, France-Lanord C, Censi P, Vignola P, Galy V and Lupker M 2011 Mineralogical and chemical variability of fluvial sediments 2. Suspended-load silt (Ganga–Brahmaputra, Bangladesh); Earth Planet. Sci. Lett. 302 107–120.

    Article  Google Scholar 

  • Giri S, Singh A K and Tewary B K 2013 Source and distribution of metals in bed sediments of Subarnarekha River, India; Environ. Earth Sci. 70 3381–3392.

    Article  Google Scholar 

  • Govindaraju K 2007 1994 Compilation of working values and descriptions for 383 geostandards; Geostand. Geoanal. Res. 18 1–158.

    Article  Google Scholar 

  • Hassan S, Ishiga H, Roser B P, Dozen K and Naka T 1999 Geochemistry of Permian–Triassic shales in the Salt Range, Pakistan: Implications for provenance and tectonism at the Gondwana margin; Chem. Geol. 158 293–314.

    Article  Google Scholar 

  • Hayashi K-I, Fujisawa H, Holland H D and Ohmoto H 1997 Geochemistry of ~1.9 Ga sedimentary rocks from northeastern Labrador, Canada; Geochim. Cosmochim. Acta 61 4115–4137, https://doi.org/10.1016/S0016-7037(97)00214.

    Article  Google Scholar 

  • He M, Zheng H, Clift P D, Tada R, Wu W and Luo C 2015 Geochemistry of fine-grained sediments in the Yangtze River and the implications for provenance and chemical weathering in East Asia; Progr. Earth Planet. Sci. 232, https://doi.org/10.1186/s40645-015-0061-6.

    Article  Google Scholar 

  • Hejabi A T and Basavarajappa H T 2013 Heavy metals partitioning in sediments of the Kabini River in South India; Environ. Monit. Assess. 185 1273–1283.

    Article  Google Scholar 

  • Hossain H M Z, Kawahata H, Roser B P, Sampei Y, Manaka T and Otan S 2017 Geochemical characteristics of modern river sediments in Myanmar and Thailand: Implications for provenance and weathering; Chem. Erde, https://doi.org/10.1016/J.Chemer.2017.07.005.

  • Hofmann A, Bolhar R, Dirks P and Jelsma H 2003 The geochemistry of Archaean shales derived from a mafic volcanic sequence, Belingwe greenstone belt, Zimbabwe: Provenance, source area unroofing and submarine versus subaerial weathering; Geochim. Cosmochim. Acta 67 421–440.

    Article  Google Scholar 

  • Jha P K, Tiwari J, Singh U K, Kumar M and Subramanian V 2009 Chemical weathering and associated CO2 consumption in the Godavari river basin, India; Chem. Geol. 264 364–374.

    Article  Google Scholar 

  • Krishnan M S 1982 Geology of India and Burma; Madras, Higginbotham, 536p.

    Google Scholar 

  • Liu Z, Colin C, Huang W, Le K P, Tong S, Chen Z and Trentesaux A 2007 Climatic and tectonic controls on weathering in South China and the Indochina Peninsula: Clay mineralogical and geochemical investigations from the Pearl, Red, and Mekong drainage basins; Geochem. Geophys. Geosyst. 8 Q05005, https://doi.org/10.1029/2006GC001490.

  • Liu Z, Wang H, Hantoro S W, Sathiamurthy E, Colin C, Zhao Y and Li J 2011 Climatic and tectonic controls on chemical weathering in tropical Southeast Asia (Malay Peninsula, Borneo, and Sumatra); Chem. Geol. 291 1–12.

    Article  Google Scholar 

  • Lupker M, France-Lanord C, Galy V, Lave J, Gaillardet J, Gajurel A P, Guilmette C, Rahman M, Singh S K and Sinha R 2012 Pre-dominant floodplain over mountain weathering of Himalayan sediments (Ganga basin); Geochim. Cosmochim. Acta 84 410–432.

    Article  Google Scholar 

  • Madhavaraju J, Ramasamy S, Alastair R and Mohan S P 2002 Clay mineralogy of the Late Cretaceous and Early Tertiary successions of the Cauvery Basin (southeastern India): Implication for sediment source and Palaeoclimates at the K/T boundary; Cret. Res. 23 153–163.

    Article  Google Scholar 

  • Madhavaraju J 2015 Geochemistry of Campanian–Maastrichtian sedimentary rocks in the Cauvery Basin, South India: Constrains on paleoweathering, provenance and end Cretaceous environments; In: Chemostratigraphy: Concept, Techniques and Applications (ed.) Ramkumar M, Elsevier, Amsterdam, pp. 185–214.

  • Madhavaraju J, Tom M, Lee Y I, Balaram V, Ramasamy S, Carranza-Edwards A and Ramachandran A 2016 Provenance and tectonic settings of sands from Puerto Peñasco, Desemboque and Bahia Kino beaches, Gulf of California, Sonora, Mexico; J. South Am. Earth Sci. 71 262–275.

    Article  Google Scholar 

  • Madhavaraju J, Pacheco-Olivas S A, Gonzalez-León C M, Espinoza-Maldonado I G, Sanchéz-Medrano P A, Villanueva-Amadoz U, Monreal R, Pi-Puig T, Ramírez-Montoya E and Grijalva-Noriega F J 2017 Mineralogy and geochemistry of the Lower Cretaceous siliciclastic rocks of the Morita Formation, Sierra San José section, Sonora, Mexico; J. South Am. Earth Sci. 76 397–411.

    Article  Google Scholar 

  • Madhavaraju J, Saucedo-Samaniego J C, Löser L, Espinoza-Maldonado I G, Solari L, Monreal R, Grijalva-Noriega F J and Jaques-Ayala C 2019 Detrital zircon record of Mesozoic volcanic arcs in the Lower Cretaceous Mural Limestone, northwestern Mexico; Geol. J. 54 2621–2645.

    Article  Google Scholar 

  • Madhavaraju J, Armstrong-Altrin J S, Pillai R B and Pi-Puig T 2020 Geochemistry of sands from the Huatabampo and Altata beaches, Gulf of California, Mexico; Geol. J., https://doi.org/10.1002/gj.3864.

  • Maharana C, Srivastava D and Tripathi J K 2018 Geochemistry of sediments of the peninsular rivers of the Ganga basin and its implication to weathering, sedimentary processes and provenance; Chem. Geol. 483 1–20.

    Article  Google Scholar 

  • McLennan S M 2001 Relationships between the trace element composition of sedimentary rocks and upper continental crust; Geochem. Geophys. Geosyst. 2 2000GC00109.

  • McLennan S M and Taylor S R 1980 Th and U in sedimentary rocks: Crustal evolution and sedimentary recycling; Nature 285 621–624.

    Article  Google Scholar 

  • McLennan S M, Nance W B and Taylor S R 1980 Rare earth element–thorium correlations in sedimentary rocks, and the composition of the continental crust; Geochim. Cosmochim. Acta 44 1833–1839.

    Article  Google Scholar 

  • McLennan S M, Hemming S, McDaniel D K and Hanson G N 1993 Geochemical approaches to sedimentation, provenance, and tectonics; Geol. Soc. Am. Spec. Pap. 284 21–40.

    Google Scholar 

  • Mongelli G, Critelli S, Perri F, Sonnino M and Perrone V 2006 Sedimentary recycling, provenance and paleoweathering from chemistry and mineralogy of Mesozoic continental redbed mudrocks, Peloritani Mountains, Southern Italy; Geochem. J. 40 197–209.

    Article  Google Scholar 

  • Nagarajan R, Armstrong-Altrin J S, Kessler F L and Jong J 2017 Petrological and geochemical constraints on provenance, paleoweathering, and tectonic setting of clastic sediments from the Neogene Lambir and Sibuti Formations, northwest Borneo; In: Sediment Provenance, Elsevier, pp. 123–153.

  • Nesbitt H W, Markovics G and Price R C 1980 Chemical processes affecting alkalies and alkaline earths during continental weathering; Geochim. Cosmochim. Acta 44 1659–1666.

    Article  Google Scholar 

  • Nesbitt H W and Young G M 1982 Early Proterozoic climates and plate motions inferred from major element chemistry of lutites; Nature 299 715–717.

    Article  Google Scholar 

  • Nesbitt H W and Young G M 1984 Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations; Geochim. Cosmochim. Acta 54 1523–1534.

    Article  Google Scholar 

  • Nesbitt H W and Young G M 1989 Formation and diagenesis of weathering profiles; J. Geol. 97 129–147.

    Article  Google Scholar 

  • Nesbitt H W and Young G M 1996 Petrogenesis of sediments in the absence of chemical weathering: Effects of abrasion and sorting on bulk composition and mineralogy; Sedimentology 43 341–358.

    Article  Google Scholar 

  • Nesbitt H W, Fedo C M and Young G M 1997 Quartz and feldspar stability, steady and non-steady-state weathering and petrogenesis of siliciclastic sands and muds; J. Geol. 105 173–191.

    Article  Google Scholar 

  • Pettijohn F J, Potter P E and Siever R 1972 Sand and Sandstone; Springer, New York, 618p.

    Google Scholar 

  • Pourmand A, Dauphas N and Ireland T J 2012 A novel extraction chromatography and MC-ICP-MS technique for rapid analysis of REE, Sc and Y: Revising CI-chondrite and Post-Archaean Australian Shale (PAAS) abundances; Chem. Geol. 291 38–54.

    Article  Google Scholar 

  • Rahaman W, Singh S K, Sinha R and Tandon S K 2009 Climate control on erosion distribution over the Himalaya during the past 100 ka; Geology 37 559–562.

    Article  Google Scholar 

  • Rahman M J J and Suzuki S 2007 Geochemistry of sandstones from the Miocene Surma Group, Bengal Basin, Bangladesh: Implications for Provenance, tectonic setting and weathering; Geochem. J. 41 415–428.

    Article  Google Scholar 

  • Rajamani V, Tripathi J K and Malviya V P 2009 Weathering of lower crustal rocks in the Kaveri river catchment, southern India: Implications to sediment geochemistry; Chem. Geol. 265 410–419.

    Article  Google Scholar 

  • Rao K L 1979 India’s Water Wealth; Orient Longman limited, New Delhi, 255p.

    Google Scholar 

  • Rao V P 1991 Clay mineral distribution in the continental shelf sediments from Krishna to Ganges river mouth, East coast of India; Indian J. Mar. Sci. 20 7–12.

    Google Scholar 

  • Rao V P, Reddy N P C and Rao Ch M 1988 Clay mineral distribution in the shelf sediments off the northern part of the east coast of India; Cont. Shelf Res. 8 145–151.

    Article  Google Scholar 

  • Rao V P and Rao B R 1995 Provenance and distribution of clay minerals in the continental shelf and slope sediments of the west coast of India; Cont. Shelf Res. 15 1757–1771.

    Article  Google Scholar 

  • Ray S B, Mohanti M and Somayajulu B L K 1984 Suspended matter, major cations and dissolved silicon in the estuarine waters of the Mahanadi river, India; J. Hydrol. 69 183–196.

    Article  Google Scholar 

  • Raza M, Ahmad A H M, Khan M S and Khan F 2010 Geochemistry and detrital modes of Proterozoic sedimentary rocks, Bayana Basin, north Delhi fold belt: Implications for provenance and source-area weathering; Int. Geol. Rev, https://doi.org/10.1080/00206814.2010.517044.

  • Roddaz M, Viers J, Brusset S, Bady P, Boucayrand C and Hérail G 2006 Controls on weathering and provenance in the Amazonian foreland basin, insights from major and trace element geochemistry of Neogene Amazonian sediments; Chem. Geol. 226 31–65.

    Article  Google Scholar 

  • Roser B P, Ishiga H and Lee H K 2000 Geochemistry and provenance of Cretaceous sediments from the Eusing block, Gyeongsang Basin, Korea; Geol. Soc. Jpn. Memoir 57 155–170.

    Google Scholar 

  • Rudnick R L and Gao S 2003 The composition of the continental crust; In: Treatise on Geochemistry, vol. 3 (eds) Rudnick R L, Holland H D and Turekian K T, Elsevier Pergamon, Oxford, 64p.

  • Saibabu S, Ramana R V, Rao V P, Ram Mohan M, Krishna A K, Sawant S and Satyasree N 2020 Composition of the peninsular India rivers average clay (PIRAC): A reference sediment composition for the upper crust from peninsular India; J. Earth Syst. Sci. 129 https://doi.org/10.1007/s12040-019-1301-8.

    Article  Google Scholar 

  • Saibabu S, Rao V P, Ramana R V, Rammohan M, Sawant S, Satyasree N and Keshav Krishna A 2021 Rare earth elements of sediments in rivers and estuaries of the east coast of India; Curr. Sci. 120 519–537.

  • Sharma A, Sensarma S, Kumar K, Khanna P P and Saini N K 2013 Mineralogy and geochemistry of the Mahi River sediments in tectonically active western India: Implications for Deccan large igneous province source, weathering and mobility of elements in a semi-arid climate; Geochim. Cosmochim. Acta 104 63–83.

    Article  Google Scholar 

  • Sensarma S, Rajamani V and Tripathi J K 2008 Petrography and geochemical characteristics of the sediments of the small River Hemavati, Southern India: Implications for provenance and weathering processes; Sedim. Geol. 205 115–125.

    Article  Google Scholar 

  • Shao J, Yang S and Li C 2012 Chemical indices (CIA and WIP) as proxies for integrated chemical weathering in China: Inferences from analysis of fluvial sediments; Sedim. Geol. 265 110–120.

    Article  Google Scholar 

  • Silva J D, Srinivasan S, Roy P D and Jonathan M P 2014 Environmental conditions inferred from multi-element concentrations in sediments off Cauvery delta, Southeast India; Environ. Earth Sci. 71 2043–2058.

    Article  Google Scholar 

  • Singh P 2010 Geochemistry and provenance of stream sediments of the Ganga River and its major tributaries in the Himalayan region, India; Chem. Geol. 269 220–236.

    Article  Google Scholar 

  • Singh P and Rajamani V 2001 Geochemistry of the Kaveri flood-plain sediments, Southern India; J. Sedim. Res. 71 50–60.

    Article  Google Scholar 

  • Singh S K and France-Lanord C 2002 Tracing the distribution of erosion in the Brahmaputra watershed from isotopic compositions of stream sediments; Earth Planet. Sci. Lett. 202 645–662.

    Article  Google Scholar 

  • Taylor S R 1965 The application of trace element data to problems in petrology; Phys. Chem. Earth 6 133–213.

    Article  Google Scholar 

  • Taylor S R and McLennan S M 1985 The Continental Crust: Its Composition and Evolution; Blackwell, Malden, MA, 312p.

    Google Scholar 

  • Tran H T, Ansdell K, Bethune K, Watters B and Ashton K 2003 Nd isotope and geochemical constraints on the depositional setting of Paleoproterozoic metasedimentary rocks along the margin of the Archaean Hearne Craton, Saskatchewan, Canada; Precamb. Res. 123 1–28.

    Article  Google Scholar 

  • Tripathi J K and Rajamani V 1999 Geochemistry of the loessic sediments of Delhi ridge, eastern Thar Desert, Rajasthan: Implications for exogenic processes; Chem. Geol. 155 265–278.

    Article  Google Scholar 

  • Wang W, Zhou M, Yan D and Li J 2012 Depositional age, provenance, and tectonic setting of the Neoproterozoic Sibao Group, southeastern Yangtze Block, South China; Precamb. Res. 192–195 107–124.

    Article  Google Scholar 

  • Weltje G J and von Eynatten H 2004 Quantitative provenance analysis of sediments: Review and outlook; Sedim. Geol. 171 1–11.

    Article  Google Scholar 

  • Wronkiewicz D J and Condie K C 1987 Geochemistry of Archaean shales from the Witwaterstrand Supergroup, South Africa: Source area weathering and provenance; Geochim. Cosmochim. Acta 51 2401–2416.

    Article  Google Scholar 

  • Yang S Y, Jung H S and Li C X 2004 Two unique weathering regimes in the Changjiang and Huanghe drainage basins: Geochemical evidence from river sediments; Sedim. Geol. 164 19–34.

    Article  Google Scholar 

  • Young G and Nesbitt H W 1998 Processes controlling the distribution of Ti and Al in weathering profiles, siliciclastic sediments and sedimentary rocks; J. Sedim. Res. 68 448–455.

    Article  Google Scholar 

Download references

Acknowledgements

Authors sincerely thank the Vice Chancellor, Vignan University for encouragement and Director, CSIR-NGRI for extending analytical facilities. Shaik Saibabu thanks the University for research fellowship. This work is carried out under the Emeritus Scientist Project of V P Rao. We thank Dr Pratima Kessarkar for helping us with clay mineralogy, using X-ray diffractometer.

Author information

Authors and Affiliations

Authors

Contributions

We state that all authors contributed equally in the field during collection of sediment samples, chemical or mineralogical analyses with high-end instruments and preparation of the manuscript.

Corresponding author

Correspondence to Venigalla Purnachandra Rao.

Additional information

Communicated by N V Chalapathi Rao

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babu, S.S., Rao, V.P., Satyasree, N. et al. Mineralogy and geochemistry of the sediments in rivers along the east coast of India: Inferences on weathering and provenance. J Earth Syst Sci 130, 60 (2021). https://doi.org/10.1007/s12040-020-01551-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-020-01551-5

Keywords

Navigation