Skip to main content

Advertisement

Log in

Anomalous Lithium Adsorption Propensity of Monolayer Carbonaceous Materials: A Density Functional Study

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Interaction between lithium and carbonaceous materials has gained a lot of importance in lithium battery industry as an important source of energy and storage. The size, dimension, curvature and chirality of the carbonaceous materials are found to be very important factors in controlling the sequential binding of lithium. The propensity of lithium binding to the monolayer carbonaceous materials has been studied using Density functional theory (DFT). Structural and energetical parameters of the complexes have been analyzed through interaction energy, sequential energy, Mulliken population analysis and spin density distribution. Spin density of odd Li doped systems reveals the preferences for addition of further lithium atoms on the surface. Upon analyzing the interaction energy in armchair carbon nanotubes (A-CNTs) and zigzag carbon nanotubes (Z-CNTs), it has been observed that external and internal surfaces of CNTs have contrasting binding preferences for sequential addition of Li atoms. Internal surface is found to be more feasible site for lithium adsorption than the external surface. This current study provides fundamental understanding of the mechanism of lithium adsorption in lithium battery.

An exhaustive analysis has been carried out to study the lithium adsorption on the carbonaceous materials such as corannulene, sumanene and CNT. Our study provides in depth understanding on the adsorption of Li on buckybowls and carbon nanotubes with various size, dimension and chirality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Scrosati B and Garche J 2010 J. Power Sources 195 2419

    Article  CAS  Google Scholar 

  2. Van der Ven A, Bhattacharya J and Bela A 2013 Acc. Chem. Res. 46 1216

    Article  CAS  Google Scholar 

  3. Xiong Z, Yun Y and Jin H -J 2013 Materials 6 1138

    Article  CAS  Google Scholar 

  4. de las Casas C and Li W 2012 J. Power Sources 208 74

    Article  CAS  Google Scholar 

  5. Landi B J, Ganter M J, Cress C D, DiLeo R A and Raffaelle R P 2009 Energy Environ. Sci. 2 638

    Article  CAS  Google Scholar 

  6. Marschilok A, Lee C -Y, Subramanian A, Takeuchi K J and Takeuchi E S 2011 Energy Environ. Sci. 4 2943

    Article  CAS  Google Scholar 

  7. Bruce P G, Scrosati B and Tarascon J M 2008 Angew. Chem. Int. Ed. 47 2930

    Article  CAS  Google Scholar 

  8. Ritchie A G 2001 J. Power Sources 96 1

    Article  CAS  Google Scholar 

  9. Dahn J R 1991 Phys. Rev. B 44 9170

    Article  CAS  Google Scholar 

  10. Tarascon J M and Armand M 2001 Nature 414 359

    Article  CAS  Google Scholar 

  11. Wang G, Shen X, Yao J and Park J 2009 Carbon 47 2049

    Article  CAS  Google Scholar 

  12. Shimoda H, Gao B, Tang X P, Kleinhammes A, Fleming L, Wu Y and Zhou O 2001 88 015502

    Article  Google Scholar 

  13. Garay-Tapia A, Romero A H and Barone V 2012 J. Chem. Theory Comput. 8 1064

    Article  CAS  Google Scholar 

  14. Khantha M, Cordero N, Molina L, Alonso J and Girifalco L 2004 Phys. Rev. B 70 125422

    Article  Google Scholar 

  15. Umadevi D, Panigrahi S and Sastry G N 2014 Acc. Chem. Res. 47 2574

    Article  CAS  Google Scholar 

  16. Mahadevi A S and Sastry G N 2016 Chem. Rev. 116 2775

    Article  CAS  Google Scholar 

  17. Umadevi D and Sastry G N 2011 J. Phys. Chem. C 115 9656

    Article  CAS  Google Scholar 

  18. Morris R S, Dixon B G, Gennett T, Raffaelle R and Heben M J 2004 J. Power Sources 138 277

    Article  CAS  Google Scholar 

  19. Chen Y, Li X, Park K, Song J, Hong J, Zhou L, Mai Y -W, Huang H and Goodenough J B 2013 J. Am. Chem. Soc. 135 16280

    Article  CAS  Google Scholar 

  20. Lim H, Shin H S, Shin H-J and Choi H C 2008 J. Am. Chem. Soc. 130 2160

    Article  CAS  Google Scholar 

  21. Rana K, Kucukayan-Dogu G, Sen H S, Boothroyd C, Gulseren O and Bengu E 2012 J. Phys. Chem. C 116 11364

    Article  CAS  Google Scholar 

  22. Yang Z, Ren J, Zhang Z, Chen X, Guan G, Qiu L, Zhang Y and Peng H 2015 Chem. Rev. 115 5159

    Article  CAS  Google Scholar 

  23. Umadevi D and Sastry G N 2012 Chem. Phys. Lett. 549 39

    Article  CAS  Google Scholar 

  24. Umadevi D and Sastry G N 2013 Chem. Phys. Chem. 14 2570

    CAS  Google Scholar 

  25. Panigrahi S, Bhattacharya A, Banerjee S and Bhattacharyya D 2012 J. Phys. Chem. C 116 4374

    Article  CAS  Google Scholar 

  26. Umadevi D and Sastry G N 2011 J. Phys. Chem. Lett. 2 1572

    Article  CAS  Google Scholar 

  27. Umadevi D and Sastry G N 2014 Front. Chem. 2 75

    Article  Google Scholar 

  28. Umadevi D and Sastry G N 2014 Curr. Sci. 106 1224

    CAS  Google Scholar 

  29. Rytkönen K, Akola J and Manninen M 2004 Phys. Rev. B 69 205404

    Article  Google Scholar 

  30. Panigrahi S and Sastry G N 2014 RSC Adv. 4 14557

    Article  CAS  Google Scholar 

  31. Denis P A 2011 J. Phys. Chem. C 115 20282

    Article  CAS  Google Scholar 

  32. Denis P A 2011 J. Phys. Chem. C 115 13392

    Article  CAS  Google Scholar 

  33. Kolmann S J, Chan B and Jordan M J 2008 Chem. Phys. Lett. 467 126

    Article  CAS  Google Scholar 

  34. Cabria I, López M and Alonso J A 2005 J. Chem. Phys. 123 204721

    Article  CAS  Google Scholar 

  35. Senami M, Ikeda Y, Fukushima A and Tachibana A 2011 AIP Adv. 1 042106

    Article  Google Scholar 

  36. Udomvech A, Kerdcharoen T and Osotchan T 2005 Chem. Phys. Lett. 406 161

    Article  CAS  Google Scholar 

  37. Pan X and Bao X 2011 Acc. Chem. Res. 44 553

    Article  CAS  Google Scholar 

  38. Chan Y and Hill J M 2011 Nanoscale Res. Lett. 6 203

    Article  Google Scholar 

  39. Ludbrook B M, Levy G, Nigge P, Zonno M, Schneider M, Dvorak D J, Veenstra C N, Zhdanovich S, Wong D, Dosanjh P, Straßer C, Stöhr A, Forti S, Ast C R, Starke U and Damascelli A 2015 Proc. Natl. Acad. Sci. U. S. A. 112 11795

    Article  CAS  Google Scholar 

  40. Koskinen P, Malola S and Häkkinen H 2008 Phys. Rev. Lett. 101 115502

    Article  Google Scholar 

  41. Saá J M and Yañez M 2009 Chem. Eur. J. 15 3123

    Article  Google Scholar 

  42. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B., Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A ., Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas Ö, Foresman J B, Ortiz J V, Cioslowski J and Fox D J 2009 (Gaussian Inc.: Wallingford CT)

  43. Mahadevi A S and Sastry G N 2013 Chem. Rev. 113 2100

    Article  CAS  Google Scholar 

  44. Priyakumar U and Sastry G N 2003 Tetrahedron Lett. 44 6043

    Article  CAS  Google Scholar 

  45. Vijay D, Sakurai H, Subramanian V and Sastry G N 2012 Phys. Chem. Chem. Phys. 14 3057

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank CSIR-12 th five year projects and TCOF fellowships for the support. GNS thanks DST for the award of J C Bose National fellowship. SP acknowledges the support of DST Young Scientist scheme.

Supplementary Information (SI)

Figures S1 to S10 are available in the Supplementary Information at www.ias.ac.in/chemsci.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to SWATI PANIGRAHI or G NARAHARI SASTRY.

Additional information

Special Issue on CHEMICAL BONDING

Celebrating 100 years of Lewis Chemical Bond

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 2.65 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

PANIGRAHI, S., UMADEVI, D. & SASTRY, G.N. Anomalous Lithium Adsorption Propensity of Monolayer Carbonaceous Materials: A Density Functional Study. J Chem Sci 128, 1641–1649 (2016). https://doi.org/10.1007/s12039-016-1171-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-016-1171-4

Keywords

Navigation