Skip to main content
Log in

Loss of egli-1, the Caenorhabditis elegans Orthologue of a Downstream Target of SMN, Leads to Abnormalities in Sensorimotor Integration

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The connectome of Caenorhabditis elegans has been extensively studied and fully mapped, allowing researchers to more confidently conclude on the impact of any change in neuronal circuits based on behavioral data. One of the more complex sensorimotor circuits in nematodes is the one that regulates the integration of feeding status with the subsequent behavioral responses that allow animals to adapt to environmental conditions. Here, we have characterized a Caenorhabditis elegans knockout model of the egli-1 gene (previously known as tag-175). This is an orthologue of the stasimon/tmem41b gene, a downstream target of SMN, the depleted protein in spinal muscular atrophy (SMA), which partially recapitulates the SMA phenotype in fly and zebrafish models when mutated. Surprisingly, egli-1 mutants reveal no deficits in motor function. Instead, they show functional impairment of a specific neuronal circuit, leading to defects in the integration of sensorial information related to food abundance, with consequences at the level of locomotion adaptation, egg laying, and the response to aversive chemical stimuli. This work has demonstrated for the first time the relevance of egli-1 in the nervous system, as well as revealed a function for this gene, which had remained elusive so far.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Emmons SW (2018) Neural circuits of sexual behavior in Caenorhabditis elegans. Annu Rev Neurosci 41:349–369. https://doi.org/10.1146/annurev-neuro-070815-014056

    Article  PubMed  CAS  Google Scholar 

  2. Dwyer DS (2018) Crossing the worm-brain barrier by using Caenorhabditis elegans to explore fundamentals of human psychiatric illness. Mol Neuropsychiatry 3:170–179. https://doi.org/10.1159/000485423

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Towlson EK, Vértes PE, Ahnert SE, Schafer WR, Bullmore ET (2013) The rich club of the C. elegans neuronal connectome. J Neurosci 33:6380–6387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cook SJ, Jarrell TA, Brittin CA, Wang Y, Bloniarz AE, Yakovlev MA, Nguyen KCQ, Tang LTH et al (2019) Whole-animal connectomes of both Caenorhabditis elegans sexes. Nature 571:63–71. https://doi.org/10.1038/s41586-019-1352-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Metaxakis A, Petratou D, Tavernarakis N (2018) Multimodal sensory processing in Caenorhabditis elegans. Open Biol 8. https://doi.org/10.1098/rsob.180049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hisamoto N, Matsumoto K (2017) Signal transduction cascades in axon regeneration: insights from C. elegans. Curr Opin Genet Dev 44:54–60. https://doi.org/10.1016/j.gde.2017.01.010

    Article  PubMed  CAS  Google Scholar 

  7. Ma L, Zhao Y, Chen Y, Cheng B, Peng A, Huang K (2018) Caenorhabditis elegans as a model system for target identification and drug screening against neurodegenerative diseases. Eur J Pharmacol 819:169–180. https://doi.org/10.1016/j.ejphar.2017.11.051

    Article  PubMed  CAS  Google Scholar 

  8. Kinser HE, Pincus Z (2017) High-throughput screening in the C. elegans nervous system. Mol Cell Neurosci 80:192–197. https://doi.org/10.1016/j.mcn.2016.06.001

    Article  PubMed  CAS  Google Scholar 

  9. Kaletta T, Hengartner MO (2006) Finding function in novel targets: C. elegans as a model organism. Nat Rev Drug Discov 5:387

    Article  CAS  PubMed  Google Scholar 

  10. Chao MY, Komatsu H, Fukuto HS, Dionne HM, Hart AC (2004) Feeding status and serotonin rapidly and reversibly modulate a Caenorhabditis elegans chemosensory circuit. Proc Natl Acad Sci U S A 101:15512–15517. https://doi.org/10.1073/pnas.0403369101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Lee KS, Iwanir S, Kopito RB et al (2017) Serotonin-dependent kinetics of feeding bursts underlie a graded response to food availability in C. elegans. Nat Commun 8:14221. https://doi.org/10.1038/ncomms14221

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Albertson DG, Thomson JN (1976) The pharynx of Caenorhabditis elegans. Philos Trans R Soc Lond Ser B Biol Sci 275:299–325. https://doi.org/10.1098/rstb.1976.0085

    Article  CAS  Google Scholar 

  13. Rhoades JL, Nelson JC, Nwabudike I et al (2019) ASICs mediate food responses in an enteric serotonergic neuron that controls foraging behaviors. Cell 176:85–97.e14. https://doi.org/10.1016/j.cell.2018.11.023

    Article  PubMed  CAS  Google Scholar 

  14. Bany IA, Dong M-Q, Koelle MR (2003) Genetic and cellular basis for acetylcholine inhibition of Caenorhabditis elegans egg-laying behavior. J Neurosci 23:8060–8069. https://doi.org/10.1523/JNEUROSCI.23-22-08060.2003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Weinshenker D, Garriga G, Thomas JH et al (1995) Genetic and pharmacological analysis of neurotransmitters controlling egg laying in C. elegans. J Neurosci 15:6975–6985. https://doi.org/10.1161/hypertensionaha.113.01275

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Sawin ER, Ranganathan R, Horvitz HR (2000) C. elegans locomotory rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway. Neuron 26:619–631. https://doi.org/10.1016/S0896-6273(00)81199-X

    Article  PubMed  CAS  Google Scholar 

  17. Lefebvre S, Bürglen L, Reboullet S et al (1995) Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80:155–165. https://doi.org/10.1016/0092-8674(95)90460-3

    Article  PubMed  CAS  Google Scholar 

  18. Gao X, Teng Y, Luo J, Huang L, Li M, Zhang Z, Ma YC, Ma L (2014) The survival motor neuron gene smn-1 interacts with the U2AF large subunit gene uaf-1 to regulate Caenorhabditis elegans lifespan and motor functions. RNA Biol 11:1148–1160. https://doi.org/10.4161/rna.36100

    Article  PubMed  PubMed Central  Google Scholar 

  19. Briese M, Esmaeili B, Fraboulet S, Burt EC, Christodoulou S, Towers PR, Davies KE, Sattelle DB (2009) Deletion of smn-1, the Caenorhabditis elegans ortholog of the spinal muscular atrophy gene, results in locomotor dysfunction and reduced lifespan. Hum Mol Genet 18:97–104. https://doi.org/10.1093/hmg/ddn320

    Article  PubMed  CAS  Google Scholar 

  20. Sleigh JN, Buckingham SD, Esmaeili B, Viswanathan M, Cuppen E, Westlund BM, Sattelle DB (2011) A novel Caenorhabditis elegans allele, smn-1(cb131), mimicking a mild form of spinal muscular atrophy, provides a convenient drug screening platform highlighting new and pre-approved compounds. Hum Mol Genet 20:245–260. https://doi.org/10.1093/hmg/ddq459

    Article  PubMed  CAS  Google Scholar 

  21. Gallotta I, Mazzarella N, Donato A, Esposito A, Chaplin JC, Castro S, Zampi G, Battaglia GS et al (2016) Neuron-specific knock-down of SMN1 causes neuron degeneration and death through an apoptotic mechanism. Hum Mol Genet 25:2564–2577. https://doi.org/10.1093/hmg/ddw119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Wu C-Y, Gagnon DA, Sardin JS, et al (2018) Enhancing GABAergic transmission improves locomotion in a Caenorhabditis elegans model of spinal muscular atrophy. eNeuro 5. https://doi.org/10.1523/ENEURO.0289-18.2018

    Article  PubMed  Google Scholar 

  23. Di Giorgio ML, Esposito A, Maccallini P et al (2017) WDR79/TCAB1 plays a conserved role in the control of locomotion and ameliorates phenotypic defects in SMA models. Neurobiol Dis 105:42–50. https://doi.org/10.1016/j.nbd.2017.05.005

    Article  PubMed  CAS  Google Scholar 

  24. Li DK, Tisdale S, Lotti F, Pellizzoni L (2014) SMN control of RNP assembly: from post-transcriptional gene regulation to motor neuron disease. Semin Cell Dev Biol 32:22–29. https://doi.org/10.1016/j.semcdb.2014.04.026

    Article  PubMed  CAS  Google Scholar 

  25. Fischer U, Liu Q, Dreyfuss G (1997) The SMN-SIP1 complex has an essential role in spliceosomal snRNP biogenesis. Cell 90:1023–1029. https://doi.org/10.1016/S0092-8674(00)80368-2

    Article  PubMed  CAS  Google Scholar 

  26. Jangi M, Fleet C, Cullen P, Gupta SV, Mekhoubad S, Chiao E, Allaire N, Bennett CF et al (2017) SMN deficiency in severe models of spinal muscular atrophy causes widespread intron retention and DNA damage. Proc Natl Acad Sci 114:E2347–E2356. https://doi.org/10.1073/pnas.1613181114

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Tisdale S, Lotti F, Saieva L et al (2013) SMN is essential for the biogenesis of U7 small nuclear ribonucleoprotein and 3’-end formation of Histone mRNAs. Cell Rep 5:1187–1195. https://doi.org/10.1016/j.celrep.2013.11.012

    Article  PubMed  CAS  Google Scholar 

  28. Ning K, Drepper C, Valori CF et al (2010) PTEN depletion rescues axonal growth defect and improves survival in SMN-deficient motor neurons. Hum Mol Genet 19:3159–3168. https://doi.org/10.1093/hmg/ddq226

    Article  PubMed  CAS  Google Scholar 

  29. Rossoll W, Jablonka S, Andreassi C et al (2003) Smn, the spinal muscular atrophy-determining gene product, modulates axon growth and localization of β-actin mRNA in growth cones of motoneurons. J Cell Biol 163:801–812. https://doi.org/10.1083/jcb.200304128

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Giesemann T, Rathke-Hartlieb S, Rothkegel M, Bartsch JW, Buchmeier S, Jockusch BM, Jockusch H (1999) A role for polyproline motifs in the spinal muscular atrophy protein SMN. Profilins bind to and colocalize with SMN in nuclear gems. J Biol Chem 274:37908–37914. https://doi.org/10.1074/jbc.274.53.37908

    Article  PubMed  CAS  Google Scholar 

  31. Oprea GE, Kröber S, McWhorter ML et al (2008) Plastin 3 is a protective modifier of autosomal recessive spinal muscular atrophy. Science (80- ) 320:524–527. https://doi.org/10.1126/science.1155085

    Article  CAS  Google Scholar 

  32. Riessland M, Kaczmarek A, Schneider S et al (2017) Neurocalcin delta suppression protects against spinal muscular atrophy in humans and across species by restoring impaired endocytosis. Am J Hum Genet 100:297–315. https://doi.org/10.1016/j.ajhg.2017.01.005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Torres-Benito L, Schneider S, Rombo R, Ling KK, Grysko V, Upadhyay A, Kononenko NL, Rigo F et al (2019) NCALD Antisense oligonucleotide therapy in addition to nusinersen further ameliorates spinal muscular atrophy in mice. Am J Hum Genet 105:221–230. https://doi.org/10.1016/j.ajhg.2019.05.008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Lotti F, Imlach WL, Saieva L, Beck ES, Hao le T, Li DK, Jiao W, Mentis GZ et al (2012) An SMN-dependent U12 splicing event essential for motor circuit function. Cell 151:440–454. https://doi.org/10.1016/j.cell.2012.09.012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Moretti F, Bergman P, Dodgson S, et al (2018) TMEM41B is a novel regulator of autophagy and lipid mobilization. EMBO Rep 19. https://doi.org/10.15252/embr.201845889

  36. Morita K, Hama Y, Izume T, Tamura N, Ueno T, Yamashita Y, Sakamaki Y, Mimura K et al (2018) Genome-wide CRISPR screen identifies TMEM41B as a gene required for autophagosome formation. J Cell Biol 217:3817–3828. https://doi.org/10.1083/jcb.201804132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Imlach WL, Beck ES, Choi BJ, Lotti F, Pellizzoni L, McCabe B (2012) SMN is required for sensory-motor circuit function in Drosophila. Cell 151:427–439. https://doi.org/10.1016/j.cell.2012.09.011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Simon CM, Janas AM, Lotti F, Tapia JC, Pellizzoni L, Mentis GZ (2016) A stem cell model of the motor circuit uncouples motor neuron death from hyperexcitability induced by SMN deficiency. Cell Rep 16:1416–1430. https://doi.org/10.1016/j.celrep.2016.06.087

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Li JY, Plomann M, Brundin P (2003) Huntington’s disease: a synaptopathy? Trends Mol Med 9:414–420. https://doi.org/10.1016/j.molmed.2003.08.006

    Article  PubMed  CAS  Google Scholar 

  40. Verret L, Mann EO, Hang GB, Barth AM, Cobos I, Ho K, Devidze N, Masliah E et al (2012) Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in alzheimer model. Cell 149:708–721. https://doi.org/10.1016/j.cell.2012.02.046

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Caviness JN (2014) Pathophysiology of Parkinson’s disease behavior - a view from the network. Parkinsonism Relat Disord 20:S39–S43. https://doi.org/10.1016/S1353-8020(13)70012-9

    Article  PubMed  Google Scholar 

  42. Kim W, Underwood RS, Greenwald I, Shaye DD (2018) OrthoList 2: a new comparative genomic analysis of human and Caenorhabditis elegans genes. Genetics 210:445 LP–445461. https://doi.org/10.1534/genetics.118.301307

    Article  CAS  Google Scholar 

  43. Hunt-Newbury R, Viveiros R, Johnsen R et al (2007) High-throughput in vivo analysis of gene expression in Caenorhabditis elegans. PLoS Biol 5:e237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. McKay SJ, Johnsen R, Khattra J, Asano J, Baillie DL, Chan S, Dube N, Fang L et al (2003) Gene expression profiling of cells, tissues, and developmental stages of the nematode C. elegans. Cold Spring Harb Symp Quant Biol 68:159–169

    Article  CAS  PubMed  Google Scholar 

  45. Henricson A, Sonnhammer ELL, Baillie DL, Gomes AV (2004) Functional characterization in Caenorhabditis elegans of transmembrane worm-human orthologs. BMC Genomics 5:85. https://doi.org/10.1186/1471-2164-5-85

    Article  PubMed  PubMed Central  Google Scholar 

  46. Yook K, Hodgkin J (2007) Mos1 mutagenesis reveals a diversity of mechanisms affecting response of Caenorhabditis elegans to the bacterial pathogen Microbacterium nematophilum. Genetics 175:681–697. https://doi.org/10.1534/genetics.106.060087

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Waggoner LE, Zhou GT, Schafer RW, Schafer WR (1998) Control of alternative behavioral states by serotonin in Caenorhabditis elegans. Neuron 21:203–214. https://doi.org/10.1016/S0896-6273(00)80527-9

    Article  PubMed  CAS  Google Scholar 

  48. Mahoney TR, Luo S, Nonet ML (2006) Analysis of synaptic transmission in Caenorhabditis elegans using an aldicarb-sensitivity assay. Nat Protoc 1:1772–1777. https://doi.org/10.1038/nprot.2006.281

    Article  PubMed  CAS  Google Scholar 

  49. Bravo FV, Da Silva J, Chan RB et al (2018) Phospholipase D functional ablation has a protective effect in an Alzheimer’s disease Caenorhabditis elegans model. Sci Rep 8:3540. https://doi.org/10.1038/s41598-018-21918-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Petrascheck M, Ye X, Buck LB (2007) An antidepressant that extends lifespan in adult Caenorhabditis elegans. Nature 450:553

    Article  CAS  PubMed  Google Scholar 

  51. Ranganathan R, Sawin ER, Trent C, Horvitz HR (2001) Mutations in the Caenorhabditis elegans serotonin reuptake transporter MOD-5 reveal serotonin-dependent and -independent activities of fluoxetine. J Neurosci 21:5871–5884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Desai C, Garriga G, Mclntire SL, Horvitz HR (1988) A genetic pathway for the development of the Caenorhabditis elegans HSN motor neurons. Nature 336:638

    Article  CAS  PubMed  Google Scholar 

  53. Van Alstyne M, Lotti F, Dal Mas A et al (2018) Stasimon/Tmem41b localizes to mitochondria-associated ER membranes and is essential for mouse embryonic development. Biochem Biophys Res Commun 506:463–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shorrock HK, van der Hoorn D, Boyd PJ, Llavero Hurtado M, Lamont DJ, Wirth B, Sleigh JN, Schiavo G et al (2018) UBA1/GARS-dependent pathways drive sensory-motor connectivity defects in spinal muscular atrophy. Brain 141:2878–2894

    Article  PubMed  PubMed Central  Google Scholar 

  55. Dong MQ, Chase D, Patikoglou GA, Koelle MR (2000) Multiple RGS proteins alter neural G protein signaling to allow C. elegans to rapidly change behavior when fed. Genes Dev 14:2003–2014

    PubMed  PubMed Central  CAS  Google Scholar 

  56. Guo M, Wu T-H, Song Y-X, Ge MH, Su CM, Niu WP, Li LL, Xu ZJ et al (2015) Reciprocal inhibition between sensory ASH and ASI neurons modulates nociception and avoidance in Caenorhabditis elegans. Nat Commun 6:5655. https://doi.org/10.1038/ncomms6655

    Article  PubMed  CAS  Google Scholar 

  57. Maricq AV, Peckol E, Driscoll M, Bargmann CI (1995) Mechanosensory signalling in C. elegans mediated by the GLR-1 glutamate receptor. Nature 378:78–81. https://doi.org/10.1038/378078a0

    Article  PubMed  CAS  Google Scholar 

  58. Kaplan JM, Horvitz HR (1993) A dual mechanosensory and chemosensory neuron in Caenorhabditis elegans. Proc Natl Acad Sci U S A 90:2227–2231. https://doi.org/10.1073/pnas.90.6.2227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. de Bono M, Villu Maricq A (2005) Neuronal substrates of complex behaviors in C. elegans. Annu Rev Neurosci 28:451–501. https://doi.org/10.1146/annurev.neuro.27.070203.144259

    Article  PubMed  CAS  Google Scholar 

  60. Walker DS, Vázquez-Manrique RP, Gower NJD et al (2009) Inositol 1,4,5-trisphosphate signalling regulates the avoidance response to nose touch in Caenorhabditis elegans. PLoS Genet 5:e1000636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gruner M, Nelson D, Winbush A et al (2014) Feeding state, insulin and NPR-1 modulate chemoreceptor gene expression via integration of sensory and circuit inputs. PLoS Genet 10:e1004707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. O’Donnell MP, Chao P-H, Kammenga JE, Sengupta P (2018) Rictor/TORC2 mediates gut-to-brain signaling in the regulation of phenotypic plasticity in C. elegans. PLoS Genet 14:e1007213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ezcurra M, Walker DS, Beets I, Swoboda P, Schafer WR (2016) Neuropeptidergic signaling and active feeding state inhibit nociception in Caenorhabditis elegans. J Neurosci 36:3157–3169. https://doi.org/10.1523/JNEUROSCI.1128-15.2016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94. https://doi.org/10.1002/cbic.200300625

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Le SQ, Gascuel O (2008) An improved general amino acid replacement matrix. Mol Biol Evol 25:1307–1320. https://doi.org/10.1093/molbev/msn067

    Article  PubMed  CAS  Google Scholar 

  66. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Teixeira-Castro A, Ailion M, Jalles A, Brignull HR, Vilaça JL, Dias N, Rodrigues P, Oliveira JF et al (2011) Neuron-specific proteotoxicity of mutant ataxin-3 in C. elegans: rescue by the DAF-16 and HSF-1 pathways. Hum Mol Genet 20:2996–3009. https://doi.org/10.1093/hmg/ddr203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Nussbaum-Krammer CI, Neto MF, Brielmann RM, et al (2015) Investigating the spreading and toxicity of prion-like proteins using the metazoan model organism C. elegans. JoVE e52321. doi:https://doi.org/10.3791/52321

  69. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. https://doi.org/10.1038/nmeth.2089

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Petrascheck M, Gomez-Amaro F (2015) Measuring C. elegans food intake in liquid culture. Protocol Exchange. https://doi.org/10.1038/protex.2015.064

  71. Teixeira-Castro A, Jalles A, Esteves S, Kang S, da Silva Santos L, Silva-Fernandes A, Neto MF, Brielmann RM et al (2015) Serotonergic signalling suppresses ataxin 3 aggregation and neurotoxicity in animal models of Machado-Joseph disease. Brain 138:3221–3237

    Article  PubMed  PubMed Central  Google Scholar 

  72. Wicks SR, de Vries CJ, van Luenen HGAM, Plasterk RHA (2000) CHE-3, a cytosolic dynein heavy chain, is required for sensory cilia structure and function in Caenorhabditis elegans. Dev Biol 221:295–307. https://doi.org/10.1006/dbio.2000.9686

    Article  PubMed  CAS  Google Scholar 

  73. Preibisch S, Saalfeld S, Tomancak P (2009) Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics 25:1463–1465. https://doi.org/10.1093/bioinformatics/btp184

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Kamath RS, Ahringer J (2003) Genome-wide RNAi screening in Caenorhabditis elegans. Methods 30:313–321. https://doi.org/10.1016/S1046-2023(03)00050-1

    Article  PubMed  CAS  Google Scholar 

  75. Paix A, Folkmann A, Rasoloson D, Seydoux G (2015) High efficiency, homology-directed genome editing in Caenorhabditis elegans using CRISPR-Cas9 ribonucleoprotein complexes. Genetics 201:47–54. https://doi.org/10.1534/genetics.115.179382

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Mello CC, Kramer JM, Stinchcomb D, Ambros V (1991) Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J 10:3959–3970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank all members of the Maciel lab for helpful tips and discussion; Dr. Anne Hart, Dr. David Sattelle, and Dr. Luísa Pinto for providing helpful technical advice and strains; Dr. Isabel Correia Neves and Dr. Isabel Alonso for providing reagents and RNAi bacterial clones; Dr. Livio Pellizzoni for helpful discussions on gene function; Dr. Tiago Gil Oliveira and Dr. Paula Ludovico for helpful comments on the manuscript; and Ana Marote for valuable help with figure designing.

Funding

This work was supported by FEDER funds, through the Competitiveness Factors Operational Programme (COMPETE), and by National funds, through the Foundation for Science and Technology (FCT), under the scope of projects POCI-01-0145-FEDER-007038 and POCI-01-0145-FEDER-031987. Moreover, the work was supported by the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER) (project NORTE-01-0145-FEDER-000013). Fellowships supporting the development of this work were attributed by FCT (PD/BD/128074/2016 to J.D.DaS., PD/BD/127818/2016 to S.O., PD/BDE/127834/2016 to J.P-S., SFRH/BPD/102317/2014 to A.T-C., and SFRH/BPD/101925/2014 to M.D.C.). Some strains were provided by the CGC, which is funded by NIH Office of Research Infrastructure Programs (P40 OD010440).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrícia Maciel.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Da Silva, J.D., Oliveira, S., Pereira-Sousa, J. et al. Loss of egli-1, the Caenorhabditis elegans Orthologue of a Downstream Target of SMN, Leads to Abnormalities in Sensorimotor Integration. Mol Neurobiol 57, 1553–1569 (2020). https://doi.org/10.1007/s12035-019-01833-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-019-01833-0

Keywords

Navigation