Skip to main content

Advertisement

Log in

Toll-Like Receptor 4 (TLR4) and Triggering Receptor Expressed on Myeloid Cells-2 (TREM-2) Activation Balance Astrocyte Polarization into a Proinflammatory Phenotype

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Astrocytes react to brain injury with a generic response known as reactive gliosis, which involves activation of multiple intracellular pathways including several that may be beneficial for neuronal survival. However, by unknown mechanisms, reactive astrocytes can polarize into a proinflammatory phenotype that induces neurodegeneration. In order to study reactive gliosis and astroglial polarization into a proinflammatory phenotype, we used cortical devascularization-induced brain ischemia in Wistar rats and primary astroglial cell cultures exposed to oxygen-glucose deprivation (OGD). We analyzed the profile of TLR4 expression and the consequences of its activation by gain- and loss-of-function studies, and the effects produced by the activation of triggering receptor expressed on myeloid cells-2 (TREM-2), a negative regulator of TLR4 signaling. Both OGD exposure on primary astroglial cell cultures and cortical devascularization brain ischemia in rats induced TLR4 expression in astrocytes. In vivo, astroglial TLR4 expression was specifically observed in the ischemic penumbra surrounding necrotic core. Functional studies showed that OGD increased the astroglial response to the TLR4 agonist lipopolysaccharide (LPS), and conversely, TLR4 knockout primary astrocytes had impaired nuclear factor kappa-B (NF-κB) activation when exposed to LPS. In gain-of-function studies, plasmid-mediated TLR4 over-expression exacerbated astroglial response to LPS as shown by sustained NF-κB activation and increased expression of proinflammatory cytokines IL-1β and TNFα. TREM-2 expression, although present in naïve primary astrocytes, was induced by OGD, LPS, or high-mobility group box 1 protein (HMGB-1) exposure. TREM-2 activation by antibody cross-linking or the overexpression of TREM-2 intracellular adaptor, DAP12, partially suppressed LPS-induced NF-κB activation in purified astrocytic cultures. In vivo, TREM-2 expression was observed in macrophages and astrocytes located in the ischemic penumbra. While TREM-2+ macrophages were abundant at 3 days post-lesion (DPL) in the ischemic core, TREM-2+ astrocytes persisted in the penumbra until 14DPL. This study demonstrates that TLR4 expression increases astroglial sensitivity to ligands facilitating astrocyte conversion towards a proinflammatory phenotype, and that astroglial TREM-2 modulates this response reducing the downstream NF-κB activation. Therefore, the availability of TLR4 and TREM-2 ligands in the ischemic environment may control proinflammatory astroglial conversion to the neurodegenerative phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:7–35

    Article  PubMed  Google Scholar 

  2. Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L, Giffard RG, Barres BA (2012) Genomic analysis of reactive astrogliosis. J Neurosci 32:6391–6410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Burda JE, Sofroniew MV (2014) Reactive gliosis and the multicellular response to CNS damage and disease. Neuron 81:229–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Villarreal A, Seoane R, González Torres A, Rosciszewski G, Angelo MF, Rossi A, Barker PA, Ramos AJ (2014) S100B protein activates a RAGE-dependent autocrine loop in astrocytes: implications for its role in the propagation of reactive gliosis. J Neurochem 131:190–205

    Article  CAS  PubMed  Google Scholar 

  5. Gorina R, Font-Nieves M, Márquez-Kisinousky L, Santalucia T, Planas AM (2011) Astrocyte TLR4 activation induces a proinflammatory environment through the interplay between MyD88-dependent NFκB signaling, MAPK, and Jak1/Stat1 pathways. Glia 59:242–255

    Article  PubMed  Google Scholar 

  6. Fellner L, Irschick R, Schanda K, Reindl M, Klimaschewski L, Poewe W, Wenning GK, Stefanova N (2013) Toll-like receptor 4 is required for α-synuclein dependent activation of microglia and astroglia. Glia 61:349–360

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kong H, Yin F, He F, Omran A, Li L, Wu T, Wang Y, Peng J (2015) The effect of miR-132, miR-146a, and miR-155 on MRP8/TLR4-induced astrocyte-related inflammation. J Mol Neurosci 57:28–37

    Article  CAS  PubMed  Google Scholar 

  8. Serramía MJ, Muñoz-Fernández MÁ, Álvarez S (2015) HIV-1 increases TLR responses in human primary astrocytes. Sci Rep 5:17887

    Article  PubMed  PubMed Central  Google Scholar 

  9. Anderson MA, Burda JE, Ren Y, Ao Y, O’Shea TM, Kawaguchi R, Coppola G, Khakh BS et al (2016) Astrocyte scar formation aids central nervous system axon regeneration. Nature 532:195–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Marinelli C, Di Liddo R, Facci L, Bertalot T, Conconi MT, Zusso M, Skaper SD, Giusti P (2015) Ligand engagement of toll-like receptors regulates their expression in cortical microglia and astrocytes. J Neuroinflammation 12:244

    Article  PubMed  PubMed Central  Google Scholar 

  11. Holm TH, Draeby D, Owens T (2012) Microglia are required for astroglial toll-like receptor 4 response and for optimal TLR2 and TLR3 response. Glia 60:630–638

    Article  PubMed  Google Scholar 

  12. Herrera DG, Robertson HA (1989) Unilateral induction of c-fos protein in cortex following cortical devascularization. Brain Res 503:205–213

    Article  CAS  PubMed  Google Scholar 

  13. Villarreal A, Aviles Reyes RX, Angelo MF, Reines AG, Ramos AJ (2011) S100B alters neuronal survival and dendrite extension via RAGE-mediated NF-κB signaling. J Neurochem 117:321–332

    Article  CAS  PubMed  Google Scholar 

  14. Villarreal A, Rosciszewski G, Murta V, Cadena V, Usach V, Dodes-Traian MM, Setton-Avruj P, Barbeito LH et al (2016) Isolation and characterization of ischemia-derived astrocytes (IDAs) with ability to transactivate quiescent astrocytes. Front Cell Neurosci 10:139

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lee W, Parpura V (2012) Dissociated cell culture for testing effects of carbon nanotubes on neuronal growth. Methods Mol Biol 846:261–276

    Article  CAS  PubMed  Google Scholar 

  16. Angelo MF, Aguirre A, Avilés Reyes RX, Villarreal A, Lukin J, Melendez M, Vanasco V, Barker P et al (2014) The proinflammatory RAGE/NF-κB pathway is involved in neuronal damage and reactive gliosis in a model of sleep apnea by intermittent hypoxia. PLoS One 9:e107901

    Article  PubMed  PubMed Central  Google Scholar 

  17. Goslin K, Schreyer DJ, Skene JH, Banker G (1988) Development of neuronal polarity: GAP-43 distinguishes axonal from dendritic growth cones. Nature 336(6200):672–674

    Article  CAS  PubMed  Google Scholar 

  18. Roger T, David J, Glauser MP, Calandra T (2001) MIF regulates innate immune responses through modulation of toll-like receptor 4. Nature 414:920–924

    Article  CAS  PubMed  Google Scholar 

  19. Wunderlich P, Glebov K, Kemmerling N, Tien NT, Neumann H, Walter J (2013) Sequential proteolytic processing of the triggering receptor expressed on myeloid cells-2 (TREM2) protein by ectodomain shedding and γ-secretase-dependent intramembranous cleavage. J Biol Chem 288:33027–33036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Murta V, Farías MI, Pitossi FJ, Ferrari CC (2015) Chronic systemic IL-1β exacerbates central neuroinflammation independently of the blood-brain barrier integrity. J Neuroimmunol 278:30–43

    Article  CAS  PubMed  Google Scholar 

  21. Avilés-Reyes RX, Angelo MF, Villarreal A, Rios H, Lazarowski A, Ramos AJ (2001) Intermittent hypoxia during sleep induces reactive gliosis and limited neuronal death in rats: implications for sleep apnea. J Neurochem 112:854–869

    Article  Google Scholar 

  22. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  23. Ramos A, Ho WC, Forte S, Dickson K, Boutilier J, Favell K, Barker PA (2007) Hypo-osmolar stress induces p75NTR expression by activating Sp1-dependent transcription. J Neurosci 27:1498–1506

    Article  CAS  PubMed  Google Scholar 

  24. Nakamura K, Watakabe A, Hioki H, Fujiyama F, Tanaka Y, Yamamori T, Kaneko T (2007) Transiently increased colocalization of vesicular glutamate transporters 1 and 2 at single axon terminals during postnatal development of mouse neocortex: a quantitative analysis with correlation coefficient. Eur J Neurosci 26:3054–3067

    Article  PubMed  Google Scholar 

  25. Burgos M, Pastor MD, González JC, Martinez-Galan JR, Vaquero CF, Fradejas N, Benavides A, Hernández-Guijo JM et al (2007) PKCepsilon upregulates voltage-dependent calcium channels in cultured astrocytes. Glia 55:1437–1448

    Article  CAS  PubMed  Google Scholar 

  26. Scarisbrick IA, Radulovic M, Burda JE, Larson N, Blaber SI, Giannini C, Blaber M, Vandell AG (2012) Kallikrein 6 is a novel molecular trigger of reactive astrogliosis. Biol Chem 393:355–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Savva A, Roger T (2013) Targeting toll-like receptors: promising therapeutic strategies for the management of sepsis-associated pathology and infectious diseases. Front Immunol 4:387

    Article  PubMed  PubMed Central  Google Scholar 

  28. Muhammad S, Barakat W, Stoyanov S, Murikinati S, Yang H, Tracey KJ, Bendszus M, Rossetti G et al (2008) The HMGB1 receptor RAGE mediates ischemic brain damage. J Neurosci 28:12023–12031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. van Beijnum JR, Buurman WA, Griffioen AW (2008) Convergence and amplification of toll-like receptor (TLR) and receptor for advanced glycation end products (RAGE) signaling pathways via high mobility group B1 (HMGB1). Angiogenesis 11:91–99

    Article  CAS  PubMed  Google Scholar 

  30. Lee JY, Lee JD, Phipps S, Noakes PG, Woodruff TM (2015) Absence of toll-like receptor 4 (TLR4) extends survival in the hSOD1 G93A mouse model of amyotrophic lateral sclerosis. J Neuroinflammation 12:90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Qiu J, Xu J, Zheng Y, Wei Y, Zhu X, Lo EH, Moskowitz MA, Sims JR (2010) High-mobility group box 1 promotes metalloproteinase-9 upregulation through toll-like receptor 4 after cerebral ischemia. Stroke 41:2077–2082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nakano Y, Furube E, Morita S, Wanaka A, Nakashima T, Miyata S (2015) Astrocytic TLR4 expression and LPS-induced nuclear translocation of STAT3 in the sensory circumventricular organs of adult mouse brain. J Neuroimmunol 278:144–158

    Article  CAS  PubMed  Google Scholar 

  33. Mishra BB, Mishra PK, Teale JM (2006) Expression and distribution of toll-like receptors in the brain during murine neurocysticercosis. J Neuroimmunol 181:46–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang Z, Zhang ZY, Wu Y, Schluesener HJ (2012) Immunolocalization of toll-like receptors 2 and 4 as well as their endogenous ligand, heat shock protein 70, in rat traumatic brain injury. Neuroimmunomodulation 19:10–19

    Article  PubMed  Google Scholar 

  35. Caso JR, Pradillo JM, Hurtado O, Lorenzo P, Moro MA, Lizasoain I (2007) Toll-like receptor 4 is involved in brain damage and inflammation after experimental stroke. Circulation 115:1599–1608

    Article  CAS  PubMed  Google Scholar 

  36. De Paola M, Mariani A, Bigini P, Peviani M, Ferrara G, Molteni M, Gemma S, Veglianese P et al (2012) Neuroprotective effects of toll-like receptor 4 antagonism in spinal cord cultures and in a mouse model of motor neuron degeneration. Mol Med 18:971–981

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Ramos AJ (2016) Astroglial heterogeneity: merely a neurobiological question? Or an opportunity for neuroprotection and regeneration after brain injury? Neural Regen Res 11:1739–1741

    Article  PubMed  PubMed Central  Google Scholar 

  38. Barbierato M, Facci L, Argentini C, Marinelli C, Skaper SD, Giusti P (2013) Astrocyte-microglia cooperation in the expression of a pro-inflammatory phenotype. CNS Neurol Disord Drug Targets 12:608–618

    Article  CAS  PubMed  Google Scholar 

  39. Facci L, Barbierato M, Marinelli C, Argentini C, Skaper SD, Giusti P (2014) Toll-like receptors 2, −3 and −4 prime microglia but not astrocytes across central nervous system regions for ATP-dependent interleukin-1β release. Sci Rep 4:6824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Alfonso-Loeches S, Pascual-Lucas M, Blanco AM, Sanchez-Vera I, Guerri C (2010) Pivotal role of TLR4 receptors in alcohol-induced neuroinflammation and brain damage. J Neurosci 30:8285–8295

    Article  CAS  PubMed  Google Scholar 

  41. Pelham CJ, Agrawal DK (2014) Emerging roles for triggering receptor expressed on myeloid cells receptor family signaling in inflammatory diseases. Expert Rev Clin Immunol 10:243–256

    Article  CAS  PubMed  Google Scholar 

  42. Sugimoto K, Nishioka R, Ikeda A, Mise A, Takahashi H, Yano H, Kumon Y, Ohnishi T et al (2014) Activated microglia in a rat stroke model express NG2 proteoglycan in peri-infarct tissue through the involvement of TGF-β1. Glia 62:185–198

    Article  PubMed  Google Scholar 

  43. Hoyos HC, Rinaldi M, Mendez-Huergo SP, Marder M, Rabinovich GA, Pasquini JM, Pasquini LA (2014) Galectin-3 controls the response of microglial cells to limit cuprizone-induced demyelination. Neurobiol Dis 62:441–455

    Article  CAS  PubMed  Google Scholar 

  44. Turnbull IR, Gilfillan S, Cella M, Aoshi T, Miller M, Piccio L, Hernandez M, Colonna M (2006) Cutting edge: TREM-2 attenuates macrophage activation. J Immunol 177:3520–3524

    Article  CAS  PubMed  Google Scholar 

  45. Takahashi K, Rochford CD, Neumann H (2005) Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. J Exp Med 201:647–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hamerman JA, Jarjoura JR, Humphrey MB, Nakamura MC, Seaman WE, Lanier LL (2006) Cutting edge: inhibition of TLR and FcR responses in macrophages by triggering receptor expressed on myeloid cells (TREM)-2 and DAP12. J Immunol 177:2051–2055

    Article  CAS  PubMed  Google Scholar 

  47. Albertsson AM, Bi D, Duan L, Zhang X, Leavenworth JW, Qiao L, Zhu C, Cardell S et al (2014) The immune response after hypoxia-ischemia in a mouse model of preterm brain injury. J Neuroinflammation 11:153

    Article  PubMed  PubMed Central  Google Scholar 

  48. Heldmann U, Mine Y, Kokaia Z, Ekdahl CT, Lindvall O (2011) Selective depletion of mac-1-expressing microglia in rat subventricular zone does not alter neurogenic response early after stroke. Exp Neurol 229:391–398

    Article  CAS  PubMed  Google Scholar 

  49. Hsieh CL, Koike M, Spusta SC, Niemi EC, Yenari M, Nakamura MC, Seaman WE (2009) A role for TREM2 ligands in the phagocytosis of apoptotic neuronal cells by microglia. J Neurochem 109:1144–1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Piccio L, Buonsanti C, Mariani M, Cella M, Gilfillan S, Cross AH, Colonna M, Panina-Bordignon P (2007) Blockade of TREM-2 exacerbates experimental autoimmune encephalomyelitis. Eur J Immunol 37:1290–1301

    Article  CAS  PubMed  Google Scholar 

  51. Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett ML, Münch AE et al (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541:481–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

GR and VC are doctoral fellows from CONICET. AJR and VM are researchers from CONICET (Argentina). We thank Dr. Marina Snitcofsky, Biot. Andrea Pecile, and Manuel Ponce for the animal care and Dr. Carla Bonavita for the correction of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

GR, AV, and AJR designed the experiments; GR, VC, VM, JL, and AV did the experimental work and analysis; GR, VC, VM, and AJR analyzed and interpreted the data; TR provided the proprietary essential reagents developed by his group; AJR wrote the article; and AJR, AV, VM, VC, JL, and TR revised the manuscript.

Corresponding author

Correspondence to Alberto Javier Ramos.

Ethics declarations

Availability of Data and Materials

The datasets used and/or analyzed during the current study available from the corresponding author on reasonable request.

Competing Interests

The authors declare that they have no competing interests.

Ethics Approval and Consent to Participate

The animal care for this experimental protocol was in accordance with the NIH guidelines for the Care and Use of Laboratory Animals, the principles presented in the Guidelines for the Use of Animals in Neuroscience Research by the Society for Neuroscience and the ARRIVE guidelines, and it was approved by the CICUAL committee of the School of Medicine, University of Buenos Aires.

Funding

Supported by grants CONICET PIP, ANPCYT PICT2012–1424, and UBACYT assigned to AJR and by grants from the Swiss National Science Foundation (SNF 145014 and 149511) to TR. Funding agencies provided the research grants that supported all materials, reagents, and services required to perform the experiments included in this manuscript.

Electronic supplementary material

Supplementary Table I

(DOCX 16 kb)

Supplementary Figure 1

Specificity of anti-TLR4 antibodies. Images of anti-TLR4 staining in the ischemic core infiltrated with blood-borne leukocytes in wild type and TLR4 −/− mice and nuclear counterstaining with DAPI. Note the absence of TLR4 immunostaining in TLR4 −/− mice. Bar = 60 μm. (GIF 232 kb)

High resolution image (TIFF 3095 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosciszewski, G., Cadena, V., Murta, V. et al. Toll-Like Receptor 4 (TLR4) and Triggering Receptor Expressed on Myeloid Cells-2 (TREM-2) Activation Balance Astrocyte Polarization into a Proinflammatory Phenotype. Mol Neurobiol 55, 3875–3888 (2018). https://doi.org/10.1007/s12035-017-0618-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0618-z

Keywords

Navigation