Skip to main content
Log in

Posttranslational Modifications Regulate the Postsynaptic Localization of PSD-95

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The postsynaptic density (PSD) consists of a lattice-like array of interacting proteins that organizes and stabilizes synaptic receptors, ion channels, structural proteins, and signaling molecules required for normal synaptic transmission and synaptic function. The scaffolding and hub protein postsynaptic density protein-95 (PSD-95) is a major element of central chemical synapses and interacts with glutamate receptors, cell adhesion molecules, and cytoskeletal elements. In fact, PSD-95 can regulate basal synaptic stability as well as the activity-dependent structural plasticity of the PSD and, therefore, of the excitatory chemical synapse. Several studies have shown that PSD-95 is highly enriched at excitatory synapses and have identified multiple protein structural domains and protein-protein interactions that mediate PSD-95 function and trafficking to the postsynaptic region. PSD-95 is also a target of several signaling pathways that induce posttranslational modifications, including palmitoylation, phosphorylation, ubiquitination, nitrosylation, and neddylation; these modifications determine the synaptic stability and function of PSD-95 and thus regulate the fates of individual dendritic spines in the nervous system. In the present work, we review the posttranslational modifications that regulate the synaptic localization of PSD-95 and describe their functional consequences. We also explore the signaling pathways that induce such changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kim E, Sheng M (2009) The postsynaptic density. Curr Biol. doi:10.1016/j.cub.2009.07.047

    Google Scholar 

  2. DeGiorgis JA, Galbraith JA, Dosemeci A, Dosemeci A et al (2006) Distribution of the scaffolding proteins PSD-95, PSD-93, and SAP97 in isolated PSDs. Brain Cell Biol 35:239–250. doi:10.1007/s11068-007-9017-0

    Article  CAS  PubMed  Google Scholar 

  3. Chen X, Vinade L, Leapman RD et al (2005) Mass of the postsynaptic density and enumeration of three key molecules. Proc Natl Acad Sci U S A 102:11551–11556. doi:10.1073/pnas.0505359102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Feng W, Zhang M (2009) Organization and dynamics of PDZ-domain-related supramodules in the postsynaptic density. Nat Rev Neurosci 10:87–99. doi:10.1038/nrn2540

    Article  CAS  PubMed  Google Scholar 

  5. Kim E, Sheng M (2004) PDZ domain proteins of synapses. Nat Rev Neurosci 5:771–781. doi:10.1038/nrn1517

    Article  CAS  PubMed  Google Scholar 

  6. Blanpied TA, Kerr JM, Ehlers MD (2008) Structural plasticity with preserved topology in the postsynaptic protein network. Proc Natl Acad Sci U S A 105:12587–12592. doi:10.1073/pnas.0711669105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kerr JM, Blanpied TA (2012) Subsynaptic AMPA receptor distribution is acutely regulated by actin-driven reorganization of the postsynaptic density. J Neurosci 32:658–673. doi:10.1523/JNEUROSCI.2927-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kuriu T, Inoue A, Bito H et al (2006) Differential control of postsynaptic density scaffolds via actin-dependent and -independent mechanisms. J Neurosci 26:7693–7706. doi:10.1523/JNEUROSCI.0522-06.2006

    Article  CAS  PubMed  Google Scholar 

  9. Sturgill JF, Steiner P, Czervionke BL, Sabatini BL (2009) Distinct domains within PSD-95 mediate synaptic incorporation, stabilization, and activity-dependent trafficking. J Neurosci 29:12845–12854. doi:10.1523/JNEUROSCI.1841-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sheng M, Kim E (2011) The postsynaptic organization of synapses. Cold Spring Harb Perspect Biol. doi:10.1101/cshperspect.a005678

    PubMed  PubMed Central  Google Scholar 

  11. Chen X, Nelson CD, Li X et al (2011) PSD-95 is required to sustain the molecular organization of the postsynaptic density. J Neurosci 31:6329–6338. doi:10.1523/JNEUROSCI.5968-10.2011.PSD-95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hunt CA, Schenker LJ, Kennedy MB (1996) PSD-95 is associated with the postsynaptic density and not with the presynaptic membrane at forebrain synapses. J Neurosci 16:1380–1388

    CAS  PubMed  Google Scholar 

  13. Irie M, Hata Y, Takeuchi M et al (1997) Binding of neuroligins to PSD-95. Science 277:1511–1515. doi:10.1126/science.277.5331.1511

    Article  CAS  PubMed  Google Scholar 

  14. Kornau HC, Schenker LT, Kennedy MB, Seeburg PH (1995) Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science 269:1737–1740. doi:10.1126/science.7569905

    Article  CAS  PubMed  Google Scholar 

  15. Kim E, Naisbitt S, Hsueh YP et al (1997) GKAP, a novel synaptic protein that interacts with the guanylate kinase-like domain of the PSD-95/SAP90 family of channel clustering molecules. J Cell Biol 136:669–678. doi:10.1083/jcb.136.3.669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tejedor FJ, Bokhari A, Rogero O et al (1997) Essential role for dlg in synaptic clustering of Shaker K+ channels in vivo. J Neurosci 17:152–159

    CAS  PubMed  PubMed Central  Google Scholar 

  17. El-Husseini AE, Craven SE, Chetkovich DM et al (2000) Dual palmitoylation of PSD-95 mediates its vesiculotubular sorting, postsynaptic targeting, and ion channel clustering. J Cell Biol 148:159–171. doi:10.1083/jcb.148.1.159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Migaud M, Charlesworth P, Dempster M et al (1998) Enhanced long-term potentiation and impaired learning in mice with mutant postsynaptic density-95 protein. Nature 396:433–439. doi:10.1038/24790

    Article  CAS  PubMed  Google Scholar 

  19. Inestrosa NC, Varela-Nallar L (2014) Wnt signaling in the nervous system and in Alzheimer’s disease. J Mol Cell Biol 6:64–74. doi:10.1093/jmcb/mjt051

    Article  PubMed  Google Scholar 

  20. Inestrosa NC, Arenas E (2010) Emerging roles of Wnts in the adult nervous system. Nat Rev Neurosci 11:77–86. doi:10.1038/nrn2755

    Article  CAS  PubMed  Google Scholar 

  21. Varela-Nallar L, Alfaro IE, Serrano FG et al (2010) Wingless-type family member 5A (Wnt-5a) stimulates synaptic differentiation and function of glutamatergic synapses. Proc Natl Acad Sci U S A 107:21164–21169. doi:10.1073/pnas.1010011107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Farías GG, Alfaro IE, Cerpa W et al (2009) Wnt-5a/JNK signaling promotes the clustering of PSD-95 in hippocampal neurons. J Biol Chem 284:15857–15866. doi:10.1074/jbc.M808986200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Stathakis DG, Hoover KB, You Z, Bryant PJ (1997) Human postsynaptic density-95 (PSD95): location of the gene (DLG4) and possible function in nonneural as well as in neural tissues. Genomics 44:71–82. doi:10.1006/geno.1997.4848

    Article  CAS  PubMed  Google Scholar 

  24. Stathakis DG, Udar N, Sandgren O et al (1999) Genomic organization of human DLG4, the gene encoding postsynaptic density 95. J Neurochem 73:2250–2265. doi:10.1046/j.1471-4159.1999.0732250.x

    Article  CAS  PubMed  Google Scholar 

  25. Bao J, Lin H, Ouyang Y et al (2004) Activity-dependent transcription regulation of PSD-95 by neuregulin-1 and Eos. Nat Neurosci 7:1250–1258. doi:10.1038/nn1342

    Article  CAS  PubMed  Google Scholar 

  26. Wilke SA, Hall BJ, Antonios JK et al (2012) NeuroD2 regulates the development of hippocampal mossy fiber synapses. Neural Dev 7:9. doi:10.1186/PREACCEPT-1243164026616498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Guan J-S, Haggarty SJ, Giacometti E et al (2009) HDAC2 negatively regulates memory formation and synaptic plasticity. Nature 459:55–60. doi:10.1038/nature07925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Muddashetty RS, Nalavadi VC, Gross C et al (2011) Reversible inhibition of PSD-95 mRNA translation by miR-125a, FMRP phosphorylation, and mGluR signaling. Mol Cell 42:673–688. doi:10.1016/j.molcel.2011.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zheng S, Gray EE, Chawla G et al (2012) PSD-95 is post-transcriptionally repressed during early neural development by PTBP1 and PTBP2. Nat Neurosci 15:381–388. doi:10.1038/nn.3026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Levy JM, Chen X, Reese TS, Nicoll RA (2015) Synaptic consolidation normalizes AMPAR quantal size following MAGUK loss. Neuron 87:534–548. doi:10.1016/j.neuron.2015.07.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zheng C-Y, Seabold GK, Horak M, Petralia RS (2011) MAGUKs, synaptic development, and synaptic plasticity. Neuroscience 17:493–512. doi:10.1177/1073858410386384

    Article  CAS  Google Scholar 

  32. McGee AW, Dakoji SR, Olsen O et al (2001) Structure of the SH3-guanylate kinase module from PSD-95 suggests a mechanism for regulated assembly of MAGUK scaffolding proteins. Mol Cell 8:1291–1301. doi:10.1016/S1097-2765(01)00411-7

    Article  CAS  PubMed  Google Scholar 

  33. McCann JJ, Zheng L, Rohrbeck D et al (2012) Supertertiary structure of the synaptic MAGuK scaffold proteins is conserved. Proc Natl Acad Sci 109:15775–15780. doi:10.1073/pnas.1200254109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Doyle DA, Lee A, Lewis J et al (1996) Crystal structures of a complexed and peptide-free membrane protein-binding domain: molecular basis of peptide recognition by PDZ. Cell 85:1067–1076. doi:10.1016/S0092-8674(00)81307-0

    Article  CAS  PubMed  Google Scholar 

  35. Craven SE, Bredt DS (2000) Synaptic targeting of the postsynaptic density protein PSD-95 mediated by a tyrosine-based trafficking signal. J Biol Chem 275:20045–20051. doi:10.1074/jbc.M910153199

    Article  CAS  PubMed  Google Scholar 

  36. Long JF, Tochio H, Wang P et al (2003) Supramodular structure and synergistic target binding of the N-terminal tandem PDZ domains of PSD-95. J Mol Biol 327:203–214. doi:10.1016/S0022-2836(03)00113-X

    Article  CAS  PubMed  Google Scholar 

  37. Brenman JE, Chao DS, Gee SH et al (1996) Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and α1-syntrophin mediated by PDZ domains. Cell 84:757–767. doi:10.1016/S0092-8674(00)81053-3

    Article  CAS  PubMed  Google Scholar 

  38. Hung AY, Sheng M (2002) PDZ domains: structural modules for protein complex assembly. J Biol Chem 277:5699–5702. doi:10.1074/jbc.R100065200

    Article  CAS  PubMed  Google Scholar 

  39. Sheng M, Sala C (2001) PDZ domains and the organization of supramolecular complexes. Annu Rev Neurosci 24:1–29. doi:10.1146/annurev.neuro.24.1.1

    Article  CAS  PubMed  Google Scholar 

  40. Korkin D, Davis FP, Alber F et al (2006) Structural modeling of protein interactions by analogy: application to PSD-95. PLoS Comput Biol 2:1365–1376. doi:10.1371/journal.pcbi.0020153

    Article  CAS  Google Scholar 

  41. Tompa P (2012) On the supertertiary structure of proteins. Nat Chem Biol 8:597–600. doi:10.1038/nchembio.1009

    Article  CAS  PubMed  Google Scholar 

  42. Chen X, Winters C, Azzam R et al (2008) Organization of the core structure of the postsynaptic density. Proc Natl Acad Sci U S A 105:4453–4458. doi:10.1073/pnas.0800897105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Niethammer M, Kim E, Sheng M (1996) Interaction between the C terminus of NMDA receptor subunits and multiple members of the PSD-95 family of membrane-associated guanylate kinases. J Neurosci 16:2157–2163

    CAS  PubMed  Google Scholar 

  44. McCann JJ, Choi UB, Bowen ME (2014) Reconstitution of multivalent PDZ domain binding to the scaffold protein PSD-95 reveals ternary-complex specificity of combinatorial inhibition. Structure 22:1458–1466. doi:10.1016/j.str.2014.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cui H, Hayashi A, Sun H-S et al (2007) PDZ protein interactions underlying NMDA receptor-mediated excitotoxicity and neuroprotection by PSD-95 inhibitors. J Neurosci 27:9901–9915. doi:10.1523/JNEUROSCI.1464-07.2007

    Article  CAS  PubMed  Google Scholar 

  46. Nicoll RA, Tomita S, Bredt DS (2006) Auxiliary subunits assist AMPA-type glutamate receptors. Science 311:1253–1256. doi:10.1126/science.1123339

    Article  CAS  PubMed  Google Scholar 

  47. Sager C, Tapken D, Kott S, Hollmann M (2009) Functional modulation of AMPA receptors by transmembrane AMPA receptor regulatory proteins. Neuroscience 158:45–54. doi:10.1016/j.neuroscience.2007.12.046

    Article  CAS  PubMed  Google Scholar 

  48. Sainlos M, Tigaret C, Poujol C et al (2011) Biomimetic divalent ligands for the acute disruption of synaptic AMPAR stabilization. Nat Chem Biol 7:81–91. doi:10.1038/nchembio.498

    Article  CAS  PubMed  Google Scholar 

  49. Schnell E, Sizemore M, Karimzadegan S et al (2002) Direct interactions between PSD-95 and stargazin control synaptic AMPA receptor number. Proc Natl Acad Sci U S A 99:13902–13907. doi:10.1073/pnas.172511199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Xu W, Schlüter OM, Steiner P et al (2008) Molecular dissociation of the role of PSD-95 in regulating synaptic strength and LTD. Neuron 57:248–262. doi:10.1016/j.neuron.2007.11.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hafner A-S, Penn AC, Grillo-Bosch D et al (2015) Lengthening of the stargazin cytoplasmic tail increases synaptic transmission by promoting interaction to deeper domains of PSD-95. Neuron 86(2):475–489. doi:10.1016/j.neuron.2015.03.013

    Article  CAS  PubMed  Google Scholar 

  52. Malinow R, Mainen ZF, Hayashi Y (2000) LTP mechanisms: from silence to four-lane traffic. Curr Opin Neurobiol 10:352–357. doi:10.1016/S0959-4388(00)00099-4

    Article  CAS  PubMed  Google Scholar 

  53. Opazo P, Choquet D (2011) A three-step model for the synaptic recruitment of AMPA receptors. Mol Cell Neurosci 46:1–8. doi:10.1016/j.mcn.2010.08.014

    Article  CAS  PubMed  Google Scholar 

  54. Sumioka A, Yan D, Tomita S (2010) TARP phosphorylation regulates synaptic AMPA receptors through lipid bilayers. Neuron 66:755–767. doi:10.1016/j.neuron.2010.04.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. MacGillavry H, Song Y, Raghavachari S, Blanpied T (2013) Nanoscale scaffolding domains within the postsynaptic density concentrate synaptic AMPA receptors. Neuron 78:615–622. doi:10.1016/j.neuron.2013.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Garcia RA, Vasudevan K, Buonanno A (2000) The neuregulin receptor ErbB-4 interacts with PDZ-containing proteins at neuronal synapses. Proc Natl Acad Sci U S A 97:3596–3601. doi:10.1073/pnas.97.7.3596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Huang YZ, Won S, Ali DW et al (2000) Regulation of neuregulin signaling by PSD-95 interacting with ErbB4 at CNS synapses. Neuron 26:443–455. doi:10.1016/S0896-6273(00)81176-9

    Article  CAS  PubMed  Google Scholar 

  58. Garcia EP, Mehta S, Blair LAC et al (1998) SAP90 binds and clusters kainate receptors causing incomplete desensitization. Neuron 21:727–739. doi:10.1016/S0896-6273(00)80590-5

    Article  CAS  PubMed  Google Scholar 

  59. Scholl FG, Scheiffele P (2003) Making connections: cholinesterase-domain proteins in the CNS. Trends Neurosci 26:618–624. doi:10.1016/j.tins.2003.09.004

    Article  CAS  PubMed  Google Scholar 

  60. Niethammer M, Valtschanoff JG, Kapoor TM et al (1998) CRIPT, a novel postsynaptic protein that binds to the third PDZ domain of PSD-95/SAP90. Neuron 20:693–707. doi:10.1016/S0896-6273(00)81009-0

    Article  CAS  PubMed  Google Scholar 

  61. Saro D, Li T, Rupasinghe C et al (2007) A thermodynamic ligand binding study of the third PDZ domain (PDZ3) from the mammalian neuronal protein PSD-95. Biochemistry 46:6340–6352. doi:10.1021/bi062088k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fukata Y, Adesnik H, Iwanaga T et al (2006) Epilepsy-related ligand/receptor complex LGI1 and ADAM22 regulate synaptic transmission. Science 313:1792–1795. doi:10.1126/science.1129947

    Article  CAS  PubMed  Google Scholar 

  63. Kim E, Niethammer M, Rothschild A et al (1995) Clustering of Shaker-type K+ channels by interaction with a family of membrane-associated guanylate kinases. Nature 378:85–88. doi:10.1038/378085a0

    Article  CAS  PubMed  Google Scholar 

  64. Cohen NA, Brenman JE, Snyder SH, Bredt DS (1996) Binding of the inward rectifier K+ channel Kir 2.3 to PSD-95 is regulated by protein kinase A phosphorylation. Neuron 17:759–767. doi:10.1016/S0896-6273(00)80207-X

    Article  CAS  PubMed  Google Scholar 

  65. Firestein BL, Firestein BL, Brenman JE et al (1999) Cypin: a cytosolic regulator of PSD-95 postsynaptic targeting. Neuron 24:659–672

    Article  CAS  PubMed  Google Scholar 

  66. Akum BF, Chen M, Gunderson SI et al (2004) Cypin regulates dendrite patterning in hippocampal neurons by promoting microtubule assembly. Nat Neurosci 7:145–152. doi:10.1038/nn1179

    Article  CAS  PubMed  Google Scholar 

  67. Hillier BJ, Christopherson KS, Prehoda KE et al (1999) Unexpected modes of PDZ domain scaffolding revealed by structure of nNOS-syntrophin complex. Science 284:812–815. doi:10.1126/science.284.5415.812

    Article  CAS  PubMed  Google Scholar 

  68. Gardoni F, Polli F, Cattabeni F, Di Luca M (2006) Calcium-calmodulin-dependent protein kinase II phosphorylation modulates PSD-95 binding to NMDA receptors. Eur J Neurosci 24:2694–2704. doi:10.1111/j.1460-9568.2006.05140.x

    Article  PubMed  Google Scholar 

  69. Tezuka T, Umemori H, Akiyama T et al (1999) PSD-95 promotes Fyn-mediated tyrosine phosphorylation of the N-methyl-D-aspartate receptor subunit NR2A. Proc Natl Acad Sci U S A 96:435–440. doi:10.1073/pnas.96.2.435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Songyang Z, Fanning AS, Fu C et al (1997) Recognition of unique carboxyl-terminal motifs by distinct PDZ domains. Science 275:73–77. doi:10.1126/science.275.5296.73

    Article  CAS  PubMed  Google Scholar 

  71. Takeuchi M, Hata Y, Hirao K et al (1997) SAPAPs. A family of PSD-95/SAP90-associated proteins localized at postsynaptic density. J Biol Chem 272:11943–11951. doi:10.1074/jbc.272.18.11943

    Article  CAS  PubMed  Google Scholar 

  72. Tao-Cheng J-H, Yang Y, Reese TS, Dosemeci A (2015) Differential distribution of Shank and GKAP at the postsynaptic density. PLoS One 10:e0118750. doi:10.1371/journal.pone.0118750

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Reese ML, Dakoji S, Bredt DS, Dötsch V (2007) The guanylate kinase domain of the MAGUK PSD-95 binds dynamically to a conserved motif in MAP1a. Nat Struct Mol Biol 14:155–163. doi:10.1038/nsmb1195

    Article  CAS  PubMed  Google Scholar 

  74. Szebenyi G, Bollati F, Bisbal M et al (2005) Activity-driven dendritic remodeling requires microtubule-associated protein 1A. Curr Biol 15:1820–1826. doi:10.1016/j.cub.2005.08.069

    Article  CAS  PubMed  Google Scholar 

  75. Kim JH, Liao D, Lau LF, Huganir RL (1998) SynGAP: a synaptic RasGAP that associates with the PSD-95/SAP90 protein family. Neuron 20:683–691. doi:10.1016/S0896-6273(00)81008-9

    Article  CAS  PubMed  Google Scholar 

  76. Naisbitt S, Valtschanoff J, Allison DW et al (2000) Interaction of the postsynaptic density-95/guanylate kinase domain-associated protein complex with a light chain of myosin-V and dynein. J Neurosci 20:4524–4534

    CAS  PubMed  Google Scholar 

  77. Charych EI, Akum BF, Goldberg JS et al (2006) Activity-independent regulation of dendrite patterning by postsynaptic density protein PSD-95. J Neurosci 26:10164–10176. doi:10.1523/JNEUROSCI.2379-06.2006

    Article  CAS  PubMed  Google Scholar 

  78. Zhao J-P, Murata Y, Constantine-Paton M (2013) Eye opening and PSD95 are required for long-term potentiation in developing superior colliculus. Proc Natl Acad Sci U S A 110:707–712. doi:10.1073/pnas.1215854110

    Article  CAS  PubMed  Google Scholar 

  79. Ehrlich I, Malinow R (2004) Postsynaptic density 95 controls AMPA receptor incorporation during long-term potentiation and experience-driven synaptic plasticity. J Neurosci 24:916–927. doi:10.1523/JNEUROSCI.4733-03.2004

    Article  CAS  PubMed  Google Scholar 

  80. El-Husseini AE, Schnell E, Chetkovich DM et al (2000) PSD-95 involvement in maturation of excitatory synapses. Science 290:1364–1368. doi:10.1126/science.290.5495.1364

    CAS  PubMed  Google Scholar 

  81. van Zundert B, Yoshii A, Constantine-Paton M (2004) Receptor compartmentalization and trafficking at glutamate synapses: a developmental proposal. Trends Neurosci 27:428–437. doi:10.1016/j.tins.2004.05.010

    Article  PubMed  Google Scholar 

  82. Bustos FJ, Varela-Nallar L, Campos M et al (2014) PSD95 suppresses dendritic arbor development in mature hippocampal neurons by occluding the clustering of NR2B-NMDA receptors. PLoS One 9:e94037. doi:10.1371/journal.pone.0094037

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Henriquez B, Bustos FJ, Aguilar R et al (2013) Ezh1 and Ezh2 differentially regulate PSD-95 gene transcription in developing hippocampal neurons. Mol Cell Neurosci 57:130–143. doi:10.1016/j.mcn.2013.07.012

    Article  CAS  PubMed  Google Scholar 

  84. Ehrlich I, Klein M, Rumpel S, Malinow R (2007) PSD-95 is required for activity-driven synapse stabilization. Proc Natl Acad Sci U S A 104:4176–4181. doi:10.1073/pnas.0609307104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yoshii A, Sheng MH, Constantine-Paton M (2003) Eye opening induces a rapid dendritic localization of PSD-95 in central visual neurons. Proc Natl Acad Sci U S A 100:1334–1339. doi:10.1073/pnas.0335785100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Yoshii A, Constantine-Paton M (2007) BDNF induces transport of PSD-95 to dendrites through PI3K-AKT signaling after NMDA receptor activation. Nat Neurosci 10:702–711. doi:10.1038/nn1903

    Article  CAS  PubMed  Google Scholar 

  87. Mumby SM (1997) Reversible palmitoylation of signaling proteins. Curr Opin Cell Biol 9:148–154. doi:10.1016/S0955-0674(97)80056-7

    Article  CAS  PubMed  Google Scholar 

  88. Sunyer B, Diao W, Lubec G (2008) The role of post-translational modifications for learning and memory formation. Electrophoresis 29:2593–2602. doi:10.1002/elps.200700791

    Article  CAS  PubMed  Google Scholar 

  89. Chamberlain LH, Shipston MJ (2015) The physiology of protein S-acylation. Physiol Rev 95:341–376. doi:10.1152/physrev.00032.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Topinka JR, Bredt DS (1998) N-terminal palmitoylation of PSD-95 regulates association with cell membranes and interaction with K+ channel K(v)1.4. Neuron 20:125–134. doi:10.1016/S0896-6273(00)80440-7

    Article  CAS  PubMed  Google Scholar 

  91. Craven SE, El-Husseini AE, Bredt DS (1999) Synaptic targeting of the postsynaptic density protein PSD-95 mediated by lipid and protein motifs. Neuron 22:497–509. doi:10.1074/jbc.M910153199

    Article  CAS  PubMed  Google Scholar 

  92. O’Brien PJ, Zatz M (1984) Acylation of bovine rhodopsin by [3H]palmitic acid. J Biol Chem 259:5054–5057

    PubMed  Google Scholar 

  93. Sudo Y, Valenzuela D, Beck-Sickinger AG et al (1992) Palmitoylation alters protein activity: blockade of G(o) stimulation by GAP-43. EMBO J 11:2095–2102

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Wedegaertner PB, Chu DH, Wilson PT et al (1993) Palmitoylation is required for signaling functions and membrane attachment of Gqα and Gsα. J Biol Chem 268:25001–25008

    CAS  PubMed  Google Scholar 

  95. Niethammer P, Delling M, Sytnyk V et al (2002) Cosignaling of NCAM via lipid rafts and the FGF receptor is required for neuritogenesis. J Cell Biol 157:521–532. doi:10.1083/jcb.200109059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Fukata Y, Fukata M (2010) Protein palmitoylation in neuronal development and synaptic plasticity. Nat Rev Neurosci 11:161–175. doi:10.1038/nrn2788

    Article  CAS  PubMed  Google Scholar 

  97. Fukata M, Fukata Y, Adesnik H et al (2004) Identification of PSD-95 palmitoylating enzymes. Neuron 44:987–996

    Article  CAS  PubMed  Google Scholar 

  98. Fukata Y, Iwanaga T, Fukata M (2006) Systematic screening for palmitoyl transferase activity of the DHHC protein family in mammalian cells. Methods 40:177–182. doi:10.1016/j.ymeth.2006.05.015

    Article  CAS  PubMed  Google Scholar 

  99. Noritake J, Fukata Y, Iwanaga T et al (2009) Mobile DHHC palmitoylating enzyme mediates activity-sensitive synaptic targeting of PSD-95. J Cell Biol 186:147–160. doi:10.1083/jcb.200903101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. El-Husseini AED, Schnell E, Dakoji S et al (2002) Synaptic strength regulated by palmitate cycling on PSD-95. Cell 108:849–863. doi:10.1016/S0092-8674(02)00683-9

    Article  CAS  Google Scholar 

  101. Fukata Y, Dimitrov A, Boncompain G et al (2013) Local palmitoylation cycles define activity-regulated postsynaptic subdomains. J Cell Biol 202:145–161. doi:10.1083/jcb.201302071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. El-Husseini AE, Bredt DS (2002) Protein palmitoylation: a regulator of neuronal development and function. Nat Rev Neurosci 3:791–802. doi:10.1038/nrn940

    Article  CAS  Google Scholar 

  103. Li B, Otsu Y, Murphy TH, Raymond LA (2003) Developmental decrease in NMDA receptor desensitization associated with shift to synapse and interaction with postsynaptic density-95. J Neurosci 23:11244–11254

    CAS  PubMed  Google Scholar 

  104. Yoshii A, Murata Y, Kim J et al (2011) TrkB and protein kinase M {zeta} regulate synaptic localization of PSD-95 in developing cortex. J Neurosci 31:11894–11904. doi:10.1523/JNEUROSCI.2190-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Parsons MP, Kang R, Buren C et al (2014) Bidirectional control of postsynaptic density-95 (PSD-95) clustering by Huntingtin. J Biol Chem 289:3518–3528. doi:10.1074/jbc.M113.513945

    Article  CAS  PubMed  Google Scholar 

  106. Yoshii A, Constantine-Paton M (2014) Postsynaptic localization of PSD-95 is regulated by all three pathways downstream of TrkB signaling. Front Synaptic Neurosci 6:1–7. doi:10.3389/fnsyn.2014.00006

    Article  CAS  Google Scholar 

  107. Zhang Y, Matt L, Patriarchi T et al (2014) Capping of the N-terminus of PSD-95 by calmodulin triggers its postsynaptic release. EMBO J 33:1341–1353. doi:10.1002/embj.201488126

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Stamler JS, Simon DI, Osborne JA et al (1992) S-nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc Natl Acad Sci U S A 89:444–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Nakamura T, Lipton SA (2015) Nitrosative stress in the nervous system: guidelines for designing experimental strategies to study protein S-nitrosylation. Neurochem Res. doi:10.1007/s11064-015-1640-z

    PubMed Central  Google Scholar 

  110. Nakamura T, Tu S, Akhtar M et al (2013) Aberrant protein S-nitrosylation in neurodegenerative diseases. Neuron 78:596–614. doi:10.1016/j.neuron.2013.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Hess DT, Matsumoto A, Kim S-O et al (2005) Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 6:150–166. doi:10.1038/nrm1569

    Article  CAS  PubMed  Google Scholar 

  112. Whalen EJ, Foster MW, Matsumoto A et al (2007) Regulation of beta-adrenergic receptor signaling by S-nitrosylation of G-protein-coupled receptor kinase 2. Cell 129:511–522. doi:10.1016/j.cell.2007.02.046

    Article  CAS  PubMed  Google Scholar 

  113. Ho GPH, Selvakumar B, Mukai J et al (2011) S-nitrosylation and S-palmitoylation reciprocally regulate synaptic targeting of PSD-95. Neuron 71:131–141. doi:10.1016/j.neuron.2011.05.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Van Weeren PC, De Bruyn KMT, De Vries-Smits AMM et al (1998) Essential role for protein kinase B (PKB) in insulin-induced glycogen synthase kinase 3 inactivation. Characterization of dominant-negative mutant of PKB. J Biol Chem 273:13150–13156. doi:10.1074/jbc.273.21.13150

    Article  PubMed  Google Scholar 

  115. Cole PA, Shen K, Qiao Y, Wang D (2003) Protein tyrosine kinases Src and Csk: a tail’s tale. Curr Opin Chem Biol 7:580–585. doi:10.1016/j.cbpa.2003.08.009

    Article  CAS  PubMed  Google Scholar 

  116. Babior BM (1999) NADPH oxidase: an update. Blood 93:1464–1476

    CAS  PubMed  Google Scholar 

  117. Cohen P (2002) The origins of protein phosphorylation. Nat Cell Biol 4:E127–E130. doi:10.1038/ncb0502-e127

    Article  CAS  PubMed  Google Scholar 

  118. Weeks ACW, Ivanco TL, Leboutillier JC et al (2000) Sequential changes in the synaptic structural profile following long- term potentiation in the rat dentate gyrus. II. Induction/early maintenance phase. Synapse 36:286–296. doi:10.1002/(SICI)1098-2396(20000615)36:4<286::AID-SYN5>3.0.CO;2-T

    Article  CAS  PubMed  Google Scholar 

  119. Dosemeci A, Tao-Cheng JH, Vinade L et al (2001) Glutamate-induced transient modification of the postsynaptic density. Proc Natl Acad Sci U S A 98:10428–10432. doi:10.1073/pnas.181336998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Ehlers MD (2003) Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system. Nat Neurosci 6:231–242. doi:10.1038/nn1013

    Article  CAS  PubMed  Google Scholar 

  121. Uematsu K, Heiman M, Zelenina M et al (2015) Protein kinase A directly phosphorylates metabotropic glutamate receptor 5 to modulate its function. J Neurochem 132:677–686. doi:10.1111/jnc.13038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Chergui K, Svenningsson P, Greengard P (2005) Physiological role for casein kinase 1 in glutamatergic synaptic transmission. J Neurosci 25:6601–6609. doi:10.1523/JNEUROSCI.1082-05.2005

    Article  CAS  PubMed  Google Scholar 

  123. Greengard P (2001) The neurobiology of slow synaptic transmission. Science 294:1024–1030. doi:10.1126/science.294.5544.1024

    Article  CAS  PubMed  Google Scholar 

  124. de Arce KP, Varela-Nallar L, Farias O et al (2010) Synaptic clustering of PSD-95 is regulated by c-Abl through tyrosine phosphorylation. J Neurosci 30:3728–3738. doi:10.1523/JNEUROSCI.2024-09.2010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Du C-P, Gao J, Tai J-M et al (2009) Increased tyrosine phosphorylation of PSD-95 by Src family kinases after brain ischaemia. Biochem J 417:277–285. doi:10.1042/BJ20080004

    Article  CAS  PubMed  Google Scholar 

  126. Zhao C, Du C-P, Peng Y et al (2015) The upregulation of NR2A-containing N-methyl-D-aspartate receptor function by tyrosine phosphorylation of postsynaptic density 95 via facilitating Src/proline-rich tyrosine kinase 2 activation. Mol Neurobiol 51:500–511. doi:10.1007/s12035-014-8796-4

    Article  CAS  PubMed  Google Scholar 

  127. Morabito MA, Sheng M, Tsai L-H (2004) Cyclin-dependent kinase 5 phosphorylates the N-terminal domain of the postsynaptic density protein PSD-95 in neurons. J Neurosci 24:865–876. doi:10.1523/JNEUROSCI.4582-03.2004

    Article  CAS  PubMed  Google Scholar 

  128. Chung HJ, Huang YH, Lau L-F, Huganir RL (2004) Regulation of the NMDA receptor complex and trafficking by activity-dependent phosphorylation of the NR2B subunit PDZ ligand. J Neurosci 24:10248–10259. doi:10.1523/JNEUROSCI.0546-04.2004

    Article  CAS  PubMed  Google Scholar 

  129. Soto D, Pancetti F, Marengo JJ et al (2004) Protein kinase CK2 in postsynaptic densities: phosphorylation of PSD-95/SAP90 and NMDA receptor regulation. Biochem Biophys Res Commun 322:542–550. doi:10.1016/j.bbrc.2004.07.158

    Article  CAS  PubMed  Google Scholar 

  130. Jaffe H, Vinade L, Dosemeci A (2004) Identification of novel phosphorylation sites on postsynaptic density proteins. Biochem Biophys Res Commun 321:210–218. doi:10.1016/j.bbrc.2004.06.122

    Article  CAS  PubMed  Google Scholar 

  131. Kim MJ, Futai K, Jo J et al (2007) Synaptic accumulation of PSD-95 and synaptic function regulated by phosphorylation of serine-295 of PSD-95. Neuron 56:488–502. doi:10.1016/j.neuron.2007.09.007

    Article  CAS  PubMed  Google Scholar 

  132. Sabio G, Reuver S, Feijoo C et al (2004) Stress- and mitogen-induced phosphorylation of the synapse-associated protein SAP90/PSD-95 by activation of SAPK3/p38gamma and ERK1/ERK2. Biochem J 380:19–30. doi:10.1042/BJ20031628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Nelson CD, Kim MJ, Hsin H et al (2013) Phosphorylation of threonine-19 of PSD-95 by GSK-3β is required for PSD-95 mobilization and long-term depression. J Neurosci 33:12122–12135. doi:10.1523/JNEUROSCI.0131-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Tsui J, Malenka RC (2006) Substrate localization creates specificity in calcium/calmodulin-dependent protein kinase II signaling at synapses. J Biol Chem 281:13794–13804. doi:10.1074/jbc.M600966200

    Article  CAS  PubMed  Google Scholar 

  135. Steiner P, Higley MJ, Xu W et al (2008) Destabilization of the postsynaptic density by PSD-95 serine 73 phosphorylation inhibits spine growth and synaptic plasticity. Neuron 60:788–802. doi:10.1016/j.neuron.2008.10.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Glaunsinger BA, Lee SS, Thomas M et al (2000) Interactions of the PDZ-protein MAGI-1 with adenovirus E4-ORF1 and high-risk papillomavirus E6 oncoproteins. Oncogene 19:5270–5280. doi:10.1038/sj.onc.1203906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. DiAntonio A, Haghighi AP, Portman SL et al (2001) Ubiquitination-dependent mechanisms regulate synaptic growth and function. Nature 412:449–452. doi:10.1038/35086595

    Article  CAS  PubMed  Google Scholar 

  138. Hegde AN, DiAntonio A (2002) Ubiquitin and the synapse. Nat Rev Neurosci 3:854–861. doi:10.1038/nrn961

    Article  CAS  PubMed  Google Scholar 

  139. Yi JJ, Ehlers MD (2005) Ubiquitin and protein turnover in synapse function. Neuron 47:629–632. doi:10.1016/j.neuron.2005.07.008

    Article  CAS  PubMed  Google Scholar 

  140. Yi JJ, Ehlers MD (2007) Emerging roles for ubiquitin and protein degradation in neuronal function. Pharmacol Rev 59:14–39. doi:10.1124/pr.59.1.4

    Article  CAS  PubMed  Google Scholar 

  141. Hershko A, Heller H, Elias S, Ciechanover A (1983) Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. J Biol Chem 258:8206–8214

    CAS  PubMed  Google Scholar 

  142. Deveraux Q, Ustrell V, Pickart C, Rechsteiner M (1994) A 26 S protease subunit that binds ubiquitin conjugates. J Biol Chem 269:7059–7061

    CAS  PubMed  Google Scholar 

  143. Ciechanover A, Elias S, Heller H, Hershko A (1982) “Covalent affinity” purification of ubiquitin-activating enzyme. J Biol Chem 257:2537–2542

    CAS  PubMed  Google Scholar 

  144. Hershko A, Ciechanover A, Rose IA (1981) Identification of the active amino acid residue of the polypeptide of ATP-dependent protein breakdown. J Biol Chem 256:1525–1528

    CAS  PubMed  Google Scholar 

  145. Pierce NW, Kleiger G, Shan S, Deshaies RJ (2009) Detection of sequential polyubiquitylation on a millisecond timescale. Nature 462:615–619. doi:10.1038/nature08595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Weissman AM (2001) Themes and variations on ubiquitylation. Nat Rev Mol Cell Biol 2:169–178. doi:10.1038/35056563

    Article  CAS  PubMed  Google Scholar 

  147. Waataja JJ, Kim HJ, Roloff AM, Thayer SA (2008) Excitotoxic loss of post-synaptic sites is distinct temporally and mechanistically from neuronal death. J Neurochem 104:364–375. doi:10.1111/j.1471-4159.2007.04973.x

    CAS  PubMed  Google Scholar 

  148. Colledge M, Snyder EM, Crozier RA et al (2003) Ubiquitination regulates PSD-95 degradation and AMPA receptor surface expression. Neuron 40:595–607. doi:10.1016/S0896-6273(03)00687-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Bianchetta MJ, Lam TT, Jones SN, Morabito MA (2011) Cyclin-dependent kinase 5 regulates PSD-95 ubiquitination in neurons. J Neurosci 31:12029–12035. doi:10.1523/JNEUROSCI.2388-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Opazo CM, Greenough MA, Bush AI (2014) Copper: from neurotransmission to neuroproteostasis. Front Aging Neurosci. doi:10.3389/fnagi.2014.00143

    Google Scholar 

  151. Park D, Ravichandran KS (2010) Emerging roles of brain-specific angiogenesis inhibitor 1. Adv Exp Med Biol 706:167–178. doi:10.1007/978-1-4419-7913-1_15

    Article  CAS  PubMed  Google Scholar 

  152. Cork SM, Van Meir EG (2011) Emerging roles for the BAI1 protein family in the regulation of phagocytosis, synaptogenesis, neurovasculature, and tumor development. J Mol Med 89:743–752. doi:10.1007/s00109-011-0759-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Mori K, Kanemura Y, Fujikawa H et al (2002) Brain-specific angiogenesis inhibitor 1 (BAI1) is expressed in human cerebral neuronal cells. Neurosci Res 43:69–74. doi:10.1016/S0168-0102(02)00018-4

    Article  CAS  PubMed  Google Scholar 

  154. Zhu D, Li C, Swanson AM et al (2015) BAI1 regulates spatial learning and synaptic plasticity in the hippocampus. J Clin Invest 125:1–12. doi:10.1172/JCI74603)

    Article  Google Scholar 

  155. Herrmann J, Lerman LO, Lerman A (2007) Ubiquitin and ubiquitin-like proteins in protein regulation. Circ Res 100:1276–1291. doi:10.1161/01.RES.0000264500.11888.f0

    Article  CAS  PubMed  Google Scholar 

  156. Rabut G, Peter M (2008) Function and regulation of protein neddylation. “Protein modifications: beyond the usual suspects” review series. EMBO Rep 9:969–976. doi:10.1038/embor.2008.183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Vogl AM, Brockmann MM, Giusti SA et al (2015) Neddylation inhibition impairs spine development, destabilizes synapses and deteriorates cognition. Nat Neurosci 18:239–251. doi:10.1038/nn.3912

    Article  CAS  PubMed  Google Scholar 

  158. Fu AK, Ip NY (2015) Neddylation is needed for synapse maturation. Nat Publ Group 18:164–166. doi:10.1038/nn.3929

    CAS  Google Scholar 

  159. Dinamarca MC, Ríos JA, Inestrosa NC (2012) Postsynaptic receptors for amyloid-β oligomers as mediators of neuronal damage in Alzheimer’s disease. Front Physiol. doi:10.3389/fphys.2012.00464

    PubMed  PubMed Central  Google Scholar 

  160. Dinamarca MC, Di Luca M, Godoy JA, Inestrosa NC (2015) The soluble extracellular fragment of neuroligin-1 targets Aβ oligomers to the postsynaptic region of excitatory synapses. Biochem Biophys Res Commun 466:66–71. doi:10.1016/j.bbrc.2015.08.107

    Article  CAS  PubMed  Google Scholar 

  161. Dinamarca MC, Weinstein D, Monasterio O, Inestrosa NC (2011) The synaptic protein neuroligin-1 interacts with the amyloid β-peptide. Is there a role in Alzheimer’s disease? Biochemistry 50:8127–8137. doi:10.1021/bi201246t

    Article  CAS  PubMed  Google Scholar 

  162. Lacor PN, Buniel MC, Chang L et al (2004) Synaptic targeting by Alzheimer’s-related amyloid beta oligomers. J Neurosci 24:10191–10200. doi:10.1523/JNEUROSCI.3432-04.2004

    Article  CAS  PubMed  Google Scholar 

  163. Pham E, Crews L, Ubhi K et al (2010) Progressive accumulation of amyloid-beta oligomers in Alzheimer’s disease and in amyloid precursor protein transgenic mice is accompanied by selective alterations in synaptic scaffold proteins. FEBS J 277:3051–3067. doi:10.1111/j.1742-4658.2010.07719.x

    Article  PubMed  PubMed Central  Google Scholar 

  164. Savioz A, Leuba G, Vallet PG (2014) A framework to understand the variations of PSD-95 expression in brain aging and in Alzheimer’s disease. Ageing Res Rev 18:86–94. doi:10.1016/j.arr.2014.09.004

    Article  CAS  PubMed  Google Scholar 

  165. Roselli F, Tirard M, Lu J et al (2005) Soluble beta-amyloid1-40 induces NMDA-dependent degradation of postsynaptic density-95 at glutamatergic synapses. J Neurosci 25:11061–11070. doi:10.1523/JNEUROSCI.3034-05.2005

    Article  CAS  PubMed  Google Scholar 

  166. Snyder EM, Nong Y, Almeida CG et al (2005) Regulation of NMDA receptor trafficking by amyloid-beta. Nat Neurosci 8:1051–1058. doi:10.1038/nn1503

    Article  CAS  PubMed  Google Scholar 

  167. Hsieh H, Boehm J, Sato C et al (2006) AMPAR removal underlies Abeta-induced synaptic depression and dendritic spine loss. Neuron 52:831–843. doi:10.1016/j.neuron.2006.10.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Codocedo JF, Montecinos-Oliva C, Inestrosa NC (2015) Wnt-related SynGAP1 is a neuroprotective factor of glutamatergic synapses against Aβ oligomers. Front Cell Neurosci 9:227. doi:10.3389/fncel.2015.00227

    Article  PubMed  PubMed Central  Google Scholar 

  169. Cerpa W, Farías GG, Godoy JA et al (2010) Wnt-5a occludes Abeta oligomer-induced depression of glutamatergic transmission in hippocampal neurons. Mol Neurodegener 5:3. doi:10.1186/1750-1326-5-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Ittner LM, Ke YD, Delerue F et al (2010) Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models. Cell 142:387–397. doi:10.1016/j.cell.2010.06.036

    Article  CAS  PubMed  Google Scholar 

  171. Young FB, Butland SL, Sanders SS et al (2012) Putting proteins in their place: palmitoylation in Huntington disease and other neuropsychiatric diseases. Prog Neurobiol 97:220–238. doi:10.1016/j.pneurobio.2011.11.002

    Article  CAS  PubMed  Google Scholar 

  172. Raymond FL, Tarpey PS, Edkins S et al (2007) Mutations in ZDHHC9, which encodes a palmitoyltransferase of NRAS and HRAS, cause X-linked mental retardation associated with a Marfanoid habitus. Am J Hum Genet 80:982–987. doi:10.1086/513609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Mansouri MR, Marklund L, Gustavsson P et al (2005) Loss of ZDHHC15 expression in a woman with a balanced translocation t(X;15)(q13.3;cen) and severe mental retardation. Eur J Hum Genet 13:970–977. doi:10.1038/sj.ejhg.5201445

    Article  CAS  PubMed  Google Scholar 

  174. Mizumaru C, Saito Y, Ishikawa T et al (2009) Suppression of APP-containing vesicle trafficking and production of β-amyloid by AID/DHHC-12 protein. J Neurochem 111:1213–1224. doi:10.1111/j.1471-4159.2009.06399.x

    Article  CAS  PubMed  Google Scholar 

  175. Chen WY, Shi YY, Zheng YL et al (2004) Case-control study and transmission disequilibrium test provide consistent evidence for association between schizophrenia and genetic variation in the 22q11 gene ZDHHC8. Hum Mol Genet 13:2991–2995. doi:10.1093/hmg/ddh322

    Article  CAS  PubMed  Google Scholar 

  176. Mukai J, Liu H, Burt RA et al (2004) Evidence that the gene encoding ZDHHC8 contributes to the risk of schizophrenia. Nat Genet 36:725–731. doi:10.1038/ng1375

    Article  CAS  PubMed  Google Scholar 

  177. Mukai J, Dhilla A, Drew LJ et al (2008) Palmitoylation-dependent neurodevelopmental deficits in a mouse model of 22q11 microdeletion. Nat Neurosci 11:1302–1310. doi:10.1038/nn.2204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Huang K, Yanai A, Kang R et al (2004) Huntingtin-interacting protein HIP14 is a palmitoyl transferase involved in palmitoylation and trafficking of multiple neuronal proteins. Neuron 44:977–986. doi:10.1016/j.neuron.2004.11.027

    Article  CAS  PubMed  Google Scholar 

  179. Yanai A, Huang K, Kang R et al (2006) Palmitoylation of Huntingtin by HIP14 is essential for its trafficking and function. Nat Neurosci 9:824–831. doi:10.1038/nn1702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Flavell SW, Cowan CW, Kim T-K et al (2006) Activity-dependent regulation of MEF2 transcription factors suppresses excitatory synapse number. Science 311:1008–1012. doi:10.1126/science.1122511

    Article  CAS  PubMed  Google Scholar 

  181. Pfeiffer BE, Zang T, Wilkerson JR et al (2010) Fragile X mental retardation protein is required for synapse elimination by the activity-dependent transcription factor MEF2. Neuron 66:191–197. doi:10.1016/j.neuron.2010.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Kelleher RJ, Bear MF (2008) The autistic neuron: troubled translation? Cell 135:401–406. doi:10.1016/j.cell.2008.10.017

    Article  CAS  PubMed  Google Scholar 

  183. Tsai NP, Wilkerson JR, Guo W et al (2012) Multiple autism-linked genes mediate synapse elimination via proteasomal degradation of a synaptic scaffold PSD-95. Cell 151:1581–1594. doi:10.1016/j.cell.2012.11.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Frederikse PH, Nandanoor A, Kasinathan C (2015) Fragile X syndrome FMRP co-localizes with regulatory targets PSD-95, GABA receptors, CaMKIIα, and mGluR5 at fiber cell membranes in the eye lens. Neurochem Res. doi:10.1007/s11064-015-1702-2

    PubMed  Google Scholar 

  185. Nissen KB, Andersen JJ, Haugaard-Kedström LM et al (2015) Design, synthesis, and characterization of fatty acid derivatives of a dimeric peptide-based postsynaptic density-95 (PSD-95) inhibitor. J Med Chem 58:1575–1580. doi:10.1021/jm501755d

    Article  CAS  PubMed  Google Scholar 

  186. Nissen KB, Haugaard-Kedström LM, Wilbek TS et al (2015) Targeting protein-protein interactions with trimeric ligands: high affinity inhibitors of the MAGUK protein family. PLoS One 10:e0117668. doi:10.1371/journal.pone.0117668

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Bach A, Clausen BH, Moller M et al (2012) A high-affinity, dimeric inhibitor of PSD-95 bivalently interacts with PDZ1-2 and protects against ischemic brain damage. Proc Natl Acad Sci 109:3317–3322. doi:10.1073/pnas.1113761109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. LeBlanc BW, Iwata M, Mallon AP et al (2010) A cyclic peptide targeted against PSD-95 blocks central sensitization and attenuates thermal hyperalgesia. Neuroscience 167:490–500. doi:10.1016/j.neuroscience.2010.02.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Tao F, Su Q, Johns RA (2008) Cell-permeable peptide Tat-PSD-95 PDZ2 inhibits chronic inflammatory pain behaviors in mice. Mol Ther 16:1776–1782. doi:10.1038/mt.2008.192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Ha CM, Park D, Han JK et al (2012) Calcyon forms a novel ternary complex with dopamine D1 receptor through PSD-95 protein and plays a role in dopamine receptor internalization. J Biol Chem 287:31813–31822. doi:10.1074/jbc.M112.370601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Basal Center of Excellence in Aging and Regeneration (CONICYT-PFB 12/2007) and FONDECYT (No. 1120156) to N. C. Inestrosa. D. Vallejo and J. F. Codocedo were postdoctoral fellows of CARE. We also thank the Sociedad Química y Minera de Chile (SQM) for a special grant on “The Effects of Lithium on Health and Disease”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nibaldo C. Inestrosa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vallejo, D., Codocedo, J.F. & Inestrosa, N.C. Posttranslational Modifications Regulate the Postsynaptic Localization of PSD-95. Mol Neurobiol 54, 1759–1776 (2017). https://doi.org/10.1007/s12035-016-9745-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9745-1

Keywords

Navigation