Skip to main content
Log in

Brain Insulin Administration Triggers Distinct Cognitive and Neurotrophic Responses in Young and Aged Rats

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Aging is a major risk factor for cognitive deficits and neurodegenerative disorders, and impaired brain insulin receptor (IR) signaling is mechanistically linked to these abnormalities. The main goal of this study was to investigate whether brain insulin infusions improve spatial memory in aged and young rats. Aged (24 months) and young (4 months) male Wistar rats were intracerebroventricularly injected with insulin (20 mU) or vehicle for five consecutive days. The animals were then assessed for spatial memory using a Morris water maze. Insulin increased memory performance in young rats, but not in aged rats. Thus, we searched for cellular and molecular mechanisms that might account for this distinct memory response. In contrast with our expectation, insulin treatment increased the proliferative activity in aged rats, but not in young rats, implying that neurogenesis-related effects do not explain the lack of insulin effects on memory in aged rats. Furthermore, the expression levels of the IR and downstream signaling proteins such as GSK3-β, mTOR, and presynaptic protein synaptophysin were increased in aged rats in response to insulin. Interestingly, insulin treatment increased the expression of the brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) receptors in the hippocampus of young rats, but not of aged rats. Our data therefore indicate that aged rats can have normal IR downstream protein expression but failed to mount a BDNF response after challenge in a spatial memory test. In contrast, young rats showed insulin-mediated TrkB/BDNF response, which paralleled with improved memory performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hofer SM, Berg S, Era P (2003) Evaluating the interdependence of aging-related changes in visual and auditory acuity, balance, and cognitive functioning. Psychol Aging 18(2):285–305

    Article  PubMed  Google Scholar 

  2. Ojo B, Rezaie P, Gabbott PL, Davies H, Colyer F, Cowley TR, Lynch M, Stewart MG (2012) Age-related changes in the hippocampus (loss of synaptophysin and glial-synaptic interaction) are modified by systemic treatment with an NCAM-derived peptide, FGL. Brain Behav Immun 26(5):778–788. doi:10.1016/j.bbi.2011.09.013

    Article  CAS  PubMed  Google Scholar 

  3. Dorszewska J (2013) Cell biology of normal brain aging: synaptic plasticity-cell death. Aging Clin Exp Res 25(1):25–34. doi:10.1007/s40520-013-0004-2

    Article  PubMed  Google Scholar 

  4. Whitwell JL, Jack CR Jr (2005) Comparisons between Alzheimer disease, frontotemporal lobar degeneration, and normal aging with brain mapping. Top Magn Reson Imaging 16(6):409–425. doi:10.1097/01.rmr.0000245457.98029.e1

    Article  PubMed  Google Scholar 

  5. Morrison JH, Baxter MG (2012) The ageing cortical synapse: hallmarks and implications for cognitive decline. Nat Rev Neurosci 13(4):240–250. doi:10.1038/nrn3200

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Porte D Jr, Baskin DG, Schwartz MW (2005) Insulin signaling in the central nervous system: a critical role in metabolic homeostasis and disease from C. elegans to humans. Diabetes 54(5):1264–1276. doi:10.2337/diabetes.54.5.1264

    Article  CAS  PubMed  Google Scholar 

  7. Muller AP, Fernandez AM, Haas C, Zimmer E, Portela LV, Torres-Aleman I (2012) Reduced brain insulin-like growth factor I function during aging. Mol Cell Neurosci 49(1):9–12. doi:10.1016/j.mcn.2011.07.008

    Article  CAS  PubMed  Google Scholar 

  8. de la Monte SM, Wands JR (2005) Review of insulin and insulin-like growth factor expression, signaling, and malfunction in the central nervous system: relevance to Alzheimer’s disease. J Alzheimers Dis 7(1):45–61

    Article  PubMed  Google Scholar 

  9. Talbot K, Wang HY, Kazi H, Han LY, Bakshi KP, Stucky A, Fuino RL, Kawaguchi KR, Samoyedny AJ, Wilson RS, Arvanitakis Z, Schneider JA, Wolf BA, Bennett DA, Trojanowski JQ, Arnold SE (2012) Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J Clin Invest 122(4):1316–1338. doi:10.1172/JCI59903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stein GM, Murphy CT (2014) The intersection of aging, longevity pathways, and learning and memory in C. elegans. Front Genet 3(259):1–13. doi:10.3389/fgene.2012.00259

    Google Scholar 

  11. Werner H, Leroith D (2014) Insulin and insulin-like growth factor receptors in the brain: physiological and pathological aspects. Eur Neuropsychopharmacol 24(12):1947–53. doi:10.1016/j.euroneuro.2014.01.020

    Article  CAS  PubMed  Google Scholar 

  12. Muller AP, Haas CB, Camacho-Pereira J, Brochier AW, Gnoatto J, Zimmer ER, de Souza DO, Galina A, Portela LV (2013) Insulin prevents mitochondrial generation of H(2)O(2) in rat brain. Exp Neurol 247:66–72. doi:10.1016/j.expneurol.2013.03.007

    Article  CAS  PubMed  Google Scholar 

  13. Stern SA, Chen DY, Alberini CM (2014) The effect of insulin and insulin-like growth factors on hippocampus- and amygdala-dependent long-term memory formation. Learn Mem 21(10):556–563. doi:10.1101/lm.029348.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. de la Monte SM (2013) Intranasal insulin therapy for cognitive impairment and neurodegeneration: current state of the art. Expert Opin Drug Deliv 10(12):1699–1709. doi:10.1517/17425247.2013.856877

    Article  PubMed  PubMed Central  Google Scholar 

  15. Takach O, Gill TB, Silverman MA (2015) Modulation of insulin signaling rescues BDNF transport defects independent of tau in amyloid-beta oligomer-treated hippocampal neurons. Neurobiol Aging 36(3):1378–1382. doi:10.1016/j.neurobiolaging.2014.11.018

    Article  CAS  PubMed  Google Scholar 

  16. Trejo JL, Piriz J, Llorens-Martin MV, Fernandez AM, Bolos M, LeRoith D, Nunez A, Torres-Aleman I (2007) Central actions of liver-derived insulin-like growth factor I underlying its pro-cognitive effects. Mol Psychiatry 12(12):1118–1128. doi:10.1038/sj.mp.4002076

    Article  CAS  PubMed  Google Scholar 

  17. Ye X, Tai W, Zhang D (2012) The early events of Alzheimer’s disease pathology: from mitochondrial dysfunction to BDNF axonal transport deficits. Neurobiol Aging 33(6):1122.e1121–1122.e1110. doi:10.1016/j.neurobiolaging.2011.11.004

    Article  Google Scholar 

  18. Mattson MP, Maudsley S, Martin B (2004) A neural signaling triumvirate that influences ageing and age-related disease: insulin/IGF-1, BDNF and serotonin. Ageing Res Rev 3(4):445–464. doi:10.1016/j.arr.2004.08.001

    Article  CAS  PubMed  Google Scholar 

  19. Muller AP, Gnoatto J, Moreira JD, Zimmer ER, Haas CB, Lulhier F, Perry ML, Souza DO, Torres-Aleman I, Portela LV (2011) Exercise increases insulin signaling in the hippocampus: physiological effects and pharmacological impact of intracerebroventricular insulin administration in mice. Hippocampus 21(10):1082–1092. doi:10.1002/hipo.20822

    Article  CAS  PubMed  Google Scholar 

  20. Bekiari C, Giannakopoulou A, Siskos N, Grivas I, Tsingotjidou A, Michaloudi H, Papadopoulos GC (2015) Neurogenesis in the septal and temporal part of the adult rat dentate gyrus. Hippocampus 25(4):511–523. doi:10.1002/hipo.22388

    Article  CAS  PubMed  Google Scholar 

  21. Steen E, Terry BM, Rivera EJ, Cannon JL, Neely TR, Tavares R, Xu XJ, Wands JR, de la Monte SM (2005) Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease—is this type 3 diabetes? J Alzheimers Dis 7(1):63–80

    Article  CAS  PubMed  Google Scholar 

  22. De Felice FG, Lourenco MV, Ferreira ST (2014) How does brain insulin resistance develop in Alzheimer’s disease? Alzheimers Dement 10(1 Suppl):S26–32. doi:10.1016/j.jalz.2013.12.004

    Article  PubMed  Google Scholar 

  23. Doble BW, Woodgett JR (2003) GSK-3: tricks of the trade for a multi-tasking kinase. J Cell Sci 116(Pt 7):1175–1186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mullen RJ, Buck CR, Smith AM (1992) NeuN, a neuronal specific nuclear protein in vertebrates. Development 116(1):201–211

    CAS  PubMed  Google Scholar 

  25. Lind D, Franken S, Kappler J, Jankowski J, Schilling K (2005) Characterization of the neuronal marker NeuN as a multiply phosphorylated antigen with discrete subcellular localization. J Neurosci Res 79(3):295–302. doi:10.1002/jnr.20354

    Article  CAS  PubMed  Google Scholar 

  26. Merrill DA, Karim R, Darraq M, Chiba AA, Tuszynski MH (2003) Hippocampal cell genesis does not correlate with spatial learning ability in aged rats. J Comp Neurol 459(2):201–207. doi:10.1002/cne.10616

    Article  PubMed  Google Scholar 

  27. Drapeau E, Mayo W, Aurousseau C, Le Moal M, Piazza PV, Abrous DN (2003) Spatial memory performances of aged rats in the water maze predict levels of hippocampal neurogenesis. Proc Natl Acad Sci U S A 100(24):14385–14390. doi:10.1073/pnas.2334169100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bizon JL, Gallagher M (2005) More is less: neurogenesis and age-related cognitive decline in Long-Evans rats. Sci Aging Knowledge Environ 2005(7):re2. doi:10.1126/sageke.2005.7.re2

    Article  PubMed  Google Scholar 

  29. Kee N, Teixeira CM, Wang AH, Frankland PW (2007) Preferential incorporation of adult-generated granule cells into spatial memory networks in the dentate gyrus. Nat Neurosci 10(3):355–362. doi:10.1038/nn1847

    Article  CAS  PubMed  Google Scholar 

  30. Shors TJ, Townsend DA, Zhao M, Kozorovitskiy Y, Gould E (2002) Neurogenesis may relate to some but not all types of hippocampal-dependent learning. Hippocampus 12(5):578–584. doi:10.1002/hipo.10103

    Article  PubMed  PubMed Central  Google Scholar 

  31. Saxe MD, Battaglia F, Wang JW, Malleret G, David DJ, Monckton JE, Garcia AD, Sofroniew MV, Kandel ER, Santarelli L, Hen R, Drew MR (2006) Ablation of hippocampal neurogenesis impairs contextual fear conditioning and synaptic plasticity in the dentate gyrus. Proc Natl Acad Sci U S A 103(46):17501–17506. doi:10.1073/pnas.0607207103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rosenzweig ES, Barnes CA (2003) Impact of aging on hippocampal function: plasticity, network dynamics, and cognition. Prog Neurobiol 69(3):143–179. doi:10.1016/S0301-0082(02)00126-0

    Article  CAS  PubMed  Google Scholar 

  33. van der Heide LP, Ramakers GM, Smidt MP (2006) Insulin signaling in the central nervous system: learning to survive. Prog Neurobiol 79(4):205–221. doi:10.1016/j.pneurobio.2006.06.003

    Article  PubMed  Google Scholar 

  34. Han X, Yang L, Du H, Sun Q, Wang X, Cong L, Liu X, Yin L, Li S, Du Y (2015) Insulin Attenuates Beta-Amyloid-Associated Insulin/Akt/EAAT Signaling Perturbations in Human Astrocytes. Cell Mol Neurobiol. doi:10.1007/s10571-015-0268-5

Download references

Acknowledgments

We thank Prof. Dr. Harm Kampinga Laboratory of Cell Biology from University of Groningen, The Netherlands for his generous scientific contributions to this work. This work was supported by grants from CNPq (Grant No. 401645/2012-6), FAPERGS, and CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre P. Muller.

Ethics declarations

The animal care followed the official governmental guidelines in compliance with the Federation of Brazilian Societies for Experimental Biology and was approved by the Ethics Committee 22535 of the Federal University of Rio Grande do Sul (UFRGS), Brazil.

Competing Interests

There are no conflicts of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haas, C.B., Kalinine, E., Zimmer, E.R. et al. Brain Insulin Administration Triggers Distinct Cognitive and Neurotrophic Responses in Young and Aged Rats. Mol Neurobiol 53, 5807–5817 (2016). https://doi.org/10.1007/s12035-015-9494-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9494-6

Keywords

Navigation