Skip to main content

Advertisement

Log in

c-Fos Protects Neurons Through a Noncanonical Mechanism Involving HDAC3 Interaction: Identification of a 21-Amino Acid Fragment with Neuroprotective Activity

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Proteins belonging to the AP-1 family of transcription factors are known to be involved in the regulation of neuronal viability. While strides have been made to elucidate the mechanisms of how individual members regulate cell death, much remains unknown. We find that the expression of one AP-1 member, c-Fos, is reduced in cerebellar granule neurons (CGNs) induced to die by low potassium (LK) treatment. Restoration and increase of this expression protect CGNs against LK-induced death, whereas knockdown induces death of otherwise healthy neurons. Furthermore, forced expression can protect cortical neurons against homocysteic acid (HCA)-induced toxicity. Taken together, this suggests that c-Fos is necessary for neuronal survival and that elevating c-Fos expression has a neuroprotective effect. Consistent with this idea is the finding that c-Fos expression is reduced selectively in the striatum in two separate mouse models of Huntington’s disease and forced expression protects against neuronal death resulting from mutant huntingtin (mut-Htt) expression. Interestingly, neuroprotection by c-Fos does not require its DNA-binding, transcriptional, or heteromerization domains. However, this protective activity can be inhibited by pharmacological inhibition of c-Abl, CK-I, and MEK-ERK signaling. Additionally, expression of point mutant forms of this protein has identified that mutation of a tyrosine residue, Tyr345, can convert c-Fos from neuroprotective to neurotoxic. We show that c-Fos interacts with histone deacetylase-3 (HDAC3), a protein that contributes to mut-Htt neurotoxicity and whose overexpression is sufficient to promote neuronal death. When co-expressed, c-Fos can protect against HDAC3 neurotoxicity. Finally, our study identifies a 21-amino acid region at the C-terminus of c-Fos that is sufficient to protect neurons against death induced by LK, HCA treatment, or mut-Htt expression when expressed via a plasmid transfection or as a cell-permeable peptide. This cell-permeable peptide, designated as Fos-CTF, could have potential as a therapeutic agent for neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Angel P, Szabowski A, Schorpp-Kistner M (2001) Function and regulation of AP-1 subunits in skin physiology and pathology. Oncogene 20:2413–2423

    Article  PubMed  CAS  Google Scholar 

  2. Chinenov Y, Kerppola TK (2001) Close encounters of many kinds: Fos-Jun interactions that mediate transcription regulatory specificity. Oncogene 20:2438–2452

    Article  PubMed  CAS  Google Scholar 

  3. Jochum W, Passegue E, Wagner EF (2001) AP-1 in mouse development and tumorigenesis. Oncogene 20:2401–2412

    Article  PubMed  CAS  Google Scholar 

  4. Shaulian E, Karin M (2001) AP-1 in cell proliferation and survival. Oncogene 20:2390–2400

    Article  PubMed  CAS  Google Scholar 

  5. D’Alonzo RC, Selvamurugan N, Karsenty G, Partridge NC (2002) Physical interaction of the activator protein-1 factors c-Fos and c-Jun with Cbfa1 for collagenase-3 promoter activation. J Biol Chem 277:816–822

    Article  PubMed  CAS  Google Scholar 

  6. Gao Z, Ye J (2008) Inhibition of transcriptional activity of c-JUN by SIRT1. Biochem Biophys Res Commun 376:793–796

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Ivorra C, Kubicek M, Gonzalez JM, Sanz-Gonzalez SM, Alvarez-Barrientos A, O’Connor JE, Burke B, Andres V (2006) A mechanism of AP-1 suppression through interaction of c-Fos with lamin A/C. Genes Dev 20:307–320

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Liang CL, Chen JL, Hsu YP, Ou JT, Chang YS (2002) Epstein-Barr virus BZLF1 gene is activated by transforming growth factor-beta through cooperativity of Smads and c-Jun/c-Fos proteins. J Biol Chem 277:23345–23357

    Article  PubMed  CAS  Google Scholar 

  9. Zhang Y, Zhao Y, Li H, Li Y, Cai X, Shen Y, Shi H, Li L, Liu Q, Zhang X, Ye L (2013) The nuclear import of oncoprotein hepatitis B X-interacting protein depends on interacting with c-Fos and phosphorylation of both proteins in breast cancer cells. J Biol Chem 288:18961–18974

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Ham J, Babij C, Whitfield J, Pfarr CM, Lallemand D, Yaniv M, Rubin LL (1995) A c-Jun dominant negative mutant protects sympathetic neurons against programmed cell death. Neuron 14:927–939

    Article  PubMed  CAS  Google Scholar 

  11. Estus S, Zaks WJ, Freeman RS, Gruda M, Bravo R, Johnson EM Jr (1994) Altered gene expression in neurons during programmed cell death: identification of c-Jun as necessary for neuronal apoptosis. J Cell Biol 127:1717–1727

    Article  PubMed  CAS  Google Scholar 

  12. Schenkel J (2004) Activation of the c-Jun transcription factor following neurodegeneration in vivo. Neurosci Lett 361:36–39

    Article  PubMed  CAS  Google Scholar 

  13. Yuan Z, Gong S, Luo J, Zheng Z, Song B, Ma S, Guo J, Hu C, Thiel G, Vinson C, Hu CD, Wang Y, Li M (2009) Opposing roles for ATF2 and c-Fos in c-Jun-mediated neuronal apoptosis. Mol Cell Biol 29:2431–2442

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Bjorkblom B, Vainio JC, Hongisto V, Herdegen T, Courtney MJ, Coffey ET (2008) All JNKs can kill, but nuclear localization is critical for neuronal death. J Biol Chem 283:19704–19713

    Article  PubMed  CAS  Google Scholar 

  15. Chen HM, Wang L, D’Mello SR (2008) Inhibition of ATF-3 expression by B-Raf mediates the neuroprotective action of GW5074. J Neurochem 105:1300–1312

    Article  PubMed  CAS  Google Scholar 

  16. Zhang J, Zhang D, McQuade JS, Behbehani M, Tsien JZ, Xu M (2002) C-Fos regulates neuronal excitability and survival. Nat Genet 30:416–420

    Article  PubMed  CAS  Google Scholar 

  17. Wacker JL, Huang SY, Steele AD, Aron R, Lotz GP, Nguyen Q, Giorgini F, Roberson ED, Lindquist S, Masliah E, Muchowski PJ (2009) Loss of Hsp70 exacerbates pathogenesis but not levels of fibrillar aggregates in a mouse model of Huntington’s disease. J Neurosci 29:9104–9114

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Anglada-Huguet M, Giralt A, Perez-Navarro E, Alberch J, Xifro X (2012) Activation of Elk-1 participates as a neuroprotective compensatory mechanism in models of Huntington’s disease. J Neurochem 121:639–648

    Article  PubMed  CAS  Google Scholar 

  19. Ferrara P, Andermarcher E, Bossis G, Acquaviva C, Brockly F, Jariel-Encontre I, Piechaczyk M (2003) The structural determinants responsible for c-Fos protein proteasomal degradation differ according to the conditions of expression. Oncogene 22:1461–1474

    Article  PubMed  CAS  Google Scholar 

  20. Bossis G, Ferrara P, Acquaviva C, Jariel-Encontre I, Piechaczyk M (2003) c-Fos proto-oncoprotein is degraded by the proteasome independently of its own ubiquitinylation in vivo. Mol Cell Biol 23:7425–7436

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. D’Mello SR, Galli C, Ciotti T, Calissano P (1993) Induction of apoptosis in cerebellar granule neurons by low potassium: inhibition of death by insulin-like growth factor I and cAMP. Proc Natl Acad Sci U S A 90:10989–10993

    Article  PubMed Central  PubMed  Google Scholar 

  22. D’Mello SR, Borodezt K, Soltoff SP (1997) Insulin-like growth factor and potassium depolarization maintain neuronal survival by distinct pathways: possible involvement of PI 3-kinase in IGF-1 signaling. J Neurosci 17:1548–1560

    PubMed  Google Scholar 

  23. Yalcin A, Koulich E, Mohamed S, Liu L, D’Mello SR (2003) Apoptosis in cerebellar granule neurons is associated with reduced interaction between CREB-binding protein and NF-kappaB. J Neurochem 84:397–408

    Article  PubMed  CAS  Google Scholar 

  24. Dastidar SG, Landrieu PM, D’Mello SR (2011) FoxG1 promotes the survival of postmitotic neurons. J Neurosci 31:402–413

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Majdzadeh N, Wang L, Morrison BE, Bassel-Duby R, Olson EN, D’Mello SR (2008) HDAC4 inhibits cell-cycle progression and protects neurons from cell death. Dev Neurobiol 68:1076–1092

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Bardai FH, Verma P, Smith C, Rawat V, Wang L, D’Mello SR (2013) Disassociation of histone deacetylase-3 from normal huntingtin underlies mutant huntingtin neurotoxicity. J Neurosci 33:11833–11838

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Bardai FH, Price V, Zaayman M, Wang L, D’Mello SR (2012) Histone deacetylase-1 (HDAC1) is a molecular switch between neuronal survival and death. J Biol Chem 287:35444–35453

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Wang L, Ankati H, Akubathini SK, Balderamos M, Storey CA, Patel AV, Price V, Kretzschmar D, Biehl ER, D’Mello SR (2010) Identification of novel 1,4-benzoxazine compounds that are protective in tissue culture and in vivo models of neurodegeneration. J Neurosci Res 88:1970–1984

    PubMed  CAS  Google Scholar 

  29. Chin PC, Liu L, Morrison BE, Siddiq A, Ratan RR, Bottiglieri T, D’Mello SR (2004) The c-Raf inhibitor GW5074 provides neuroprotection in vitro and in an animal model of neurodegeneration through a MEK-ERK and Akt-independent mechanism. J Neurochem 90:595–608

    Article  PubMed  CAS  Google Scholar 

  30. Galli C, Meucci O, Scorziello A, Werge TM, Calissano P, Schettini G (1995) Apoptosis in cerebellar granule cells is blocked by high KCl, forskolin, and IGF-1 through distinct mechanisms of action: the involvement of intracellular calcium and RNA synthesis. J Neurosci 15:1172–1179

    PubMed  CAS  Google Scholar 

  31. Ratan RR, Murphy TH, Baraban JM (1994) Oxidative stress induces apoptosis in embryonic cortical neurons. J Neurochem 62:376–379

    Article  PubMed  CAS  Google Scholar 

  32. Ratan RR, Murphy TH, Baraban JM (1994) Macromolecular synthesis inhibitors prevent oxidative stress-induced apoptosis in embryonic cortical neurons by shunting cysteine from protein synthesis to glutathione. J Neurosci 14:4385–4392

    PubMed  CAS  Google Scholar 

  33. Chen RH, Abate C, Blenis J (1993) Phosphorylation of the c-Fos transrepression domain by mitogen-activated protein kinase and 90-kDa ribosomal S6 kinase. Proc Natl Acad Sci U S A 90:10952–10956

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Okazaki K, Sagata N (1995) The Mos/MAP kinase pathway stabilizes c-Fos by phosphorylation and augments its transforming activity in NIH 3T3 cells. EMBO J 14:5048–5059

    PubMed Central  PubMed  CAS  Google Scholar 

  35. Murphy LO, Smith S, Chen RH, Fingar DC, Blenis J (2002) Molecular interpretation of ERK signal duration by immediate early gene products. Nat Cell Biol 4:556–564

    PubMed  CAS  Google Scholar 

  36. Schuermann M, Neuberg M, Hunter JB, Jenuwein T, Ryseck RP, Bravo R, Muller R (1989) The leucine repeat motif in Fos protein mediates complex formation with Jun/AP-1 and is required for transformation. Cell 56:507–516

    Article  PubMed  CAS  Google Scholar 

  37. Neuberg M, Adamkiewicz J, Hunter JB, Muller R (1989) A Fos protein containing the Jun leucine zipper forms a homodimer which binds to the AP1 binding site. Nature 341:243–245

    Article  PubMed  CAS  Google Scholar 

  38. Cohen DR, Curran T (1990) Analysis of dimerization and DNA binding functions in Fos and Jun by domain-swapping: involvement of residues outside the leucine zipper/basic region. Oncogene 5:929–939

    PubMed  CAS  Google Scholar 

  39. Borlongan CV, Koutouzis TK, Sanberg PR (1997) 3-Nitropropionic acid animal model and Huntington’s disease. Neurosci Biobehav Rev 21:289–293

    Article  PubMed  CAS  Google Scholar 

  40. Brouillet E, Jacquard C, Bizat N, Blum D (2005) 3-Nitropropionic acid: a mitochondrial toxin to uncover physiopathological mechanisms underlying striatal degeneration in Huntington’s disease. J Neurochem 95:1521–1540

    Article  PubMed  CAS  Google Scholar 

  41. Wang L, Ankati H, Akubathini SK, Balderamos M, Storey CA, Patel AV, Price V, Kretzschmar D, Biehl ER, D’Mello SR (2010) Identification of novel 1,4-benzoxazine compounds that are protective in tissue culture and in vivo models of neurodegeneration. J Neurosci Res 88:1970–1984

    PubMed  CAS  Google Scholar 

  42. Jia H, Pallos J, Jacques V, Lau A, Tang B, Cooper A, Syed A, Purcell J, Chen Y, Sharma S, Sangrey GR, Darnell SB, Plasterer H, Sadri-Vakili G, Gottesfeld JM, Thompson LM, Rusche JR, Marsh JL, Thomas EA (2012) Histone deacetylase (HDAC) inhibitors targeting HDAC3 and HDAC1 ameliorate polyglutamine-elicited phenotypes in model systems of Huntington’s disease. Neurobiol Dis 46:351–361

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Thomas EA, Coppola G, Desplats PA, Tang B, Soragni E, Burnett R, Gao F, Fitzgerald KM, Borok JF, Herman D, Geschwind DH, Gottesfeld JM (2008) The HDAC inhibitor 4b ameliorates the disease phenotype and transcriptional abnormalities in Huntington’s disease transgenic mice. Proc Natl Acad Sci U S A 105:15564–15569

    Article  PubMed Central  PubMed  Google Scholar 

  44. Steffan JS, Bodai L, Pallos J, Poelman M, McCampbell A, Apostol BL, Kazantsev A, Schmidt E, Hu YZ, Greenwald M, Kurokawa R, Housman DE, Jackson GR, Marsh JL, Thompson LM (2001) Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature 413:739–43

    Article  PubMed  CAS  Google Scholar 

  45. Pallos J, Bodai L, Lukacsovich T, Purcell JM, Steffan JS, Thompson LM, Marsh JL (2008) Inhibition of specific HDACs and sirtuins suppresses pathogenesis in a Drosophila model of Huntington’s disease. Hum Mol Genet 17:3767–3775

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  46. Ferrante RJ, Kubilus JK, Lee J, Ryu H, Beesen A, Zucker B, Smith K, Kowall NW, Ratan RR, Luthi-Carter R, Hersch SM (2003) Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington’s disease mice. J Neurosci 23:9418–9427

    PubMed  CAS  Google Scholar 

  47. Hockly E, Richon VM, Woodman B, Smith DL, Zhou X, Rosa E, Sathasivam K, Ghazi-Noori S, Mahal A, Lowden PA, Steffan JS, Marsh JL, Thompson LM, Lewis CM, Marks PA, Bates GP (2003) Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington’s disease. Proc Natl Acad Sci U S A 100:2041–2046

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. Bardai FH, D’Mello SR (2011) Selective toxicity by HDAC3 in neurons: regulation by Akt and GSK3beta. J Neurosci 31:1746–1751

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Zhao K, Ippolito G, Wang L, Price V, Kim MH, Cornwell G, Fulenchek S, Breen GA, Goux WJ, D’Mello SR (2010) Neuron-selective toxicity of tau peptide in a cell culture model of neurodegenerative tauopathy: essential role for aggregation in neurotoxicity. J Neurosci Res 88:3399–3413

    Article  PubMed  CAS  Google Scholar 

  50. Zaidi N, Burster T, Sommandas V, Herrmann T, Boehm BO, Driessen C, Voelter W, Kalbacher H (2007) A novel cell penetrating aspartic protease inhibitor blocks processing and presentation of tetanus toxoid more efficiently than pepstatin A. Biochem Biophys Res Commun 364:243–249

    Article  PubMed  CAS  Google Scholar 

  51. Zhai D, Luciano F, Zhu X, Guo B, Satterthwait AC, Reed JC (2005) Humanin binds and nullifies Bid activity by blocking its activation of Bax and Bak. J Biol Chem 280:15815–15824

    Article  PubMed  CAS  Google Scholar 

  52. D’Mello SR (2009) Histone deacetylases as targets for the treatment of human neurodegenerative diseases. Drug News Perspect 22:513–524

    Article  PubMed Central  PubMed  Google Scholar 

  53. Kazantsev AG, Thompson LM (2008) Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nat Rev Drug Discov 7:854–868

    Article  PubMed  CAS  Google Scholar 

  54. Sleiman SF, Basso M, Mahishi L, Kozikowski AP, Donohoe ME, Langley B, Ratan RR (2009) Putting the ‘HAT’ back on survival signalling: the promises and challenges of HDAC inhibition in the treatment of neurological conditions. Expert Opin Investig Drugs 18:573–584

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant R01 NS040408 to SRD. We thank Eric J. Nestler of the Mount Sinai Medical Center, NY for the FosB and ΔFosB plasmids, Troy Littleton of MIT for the wild-type and mutant Htt plasmids, and Rajiv R. Ratan of the Burke Institute of Medical Research, NY, for the HT22 cell line, Jason A. Pfister, Jade M. Franklin and Chad C. Smith for reading the manuscript and providing comments.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh R. D′Mello.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rawat, V., Goux, W., Piechaczyk, M. et al. c-Fos Protects Neurons Through a Noncanonical Mechanism Involving HDAC3 Interaction: Identification of a 21-Amino Acid Fragment with Neuroprotective Activity. Mol Neurobiol 53, 1165–1180 (2016). https://doi.org/10.1007/s12035-014-9058-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-9058-1

Keywords

Navigation