Skip to main content
Log in

Oncostatin M Reduces Lesion Size and Promotes Functional Recovery and Neurite Outgrowth After Spinal Cord Injury

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The family of interleukin (IL)-6 like cytokines plays an important role in the neuroinflammatory response to injury by regulating both neural as well as immune responses. Here, we show that expression of the IL-6 family member oncostatin M (OSM) and its receptor is upregulated after spinal cord injury (SCI). To reveal the relevance of increased OSM signaling in the pathophysiology of SCI, OSM was applied locally after spinal cord hemisection in mice. OSM treatment significantly improved locomotor recovery after mild and severe SCI. Improved recovery in OSM-treated mice was associated with a reduced lesion size. OSM significantly diminished astrogliosis and immune cell infiltration. Thus, OSM limits secondary damage after CNS trauma. In vitro viability assays demonstrated that OSM protects primary neurons in culture from cell death, suggesting that the underlying mechanism involves direct neuroprotective effects of OSM. Furthermore, OSM dose-dependently promoted neurite outgrowth in cultured neurons, indicating that the cytokine plays an additional role in CNS repair. Indeed, our in vivo experiments demonstrate that OSM treatment increases plasticity of serotonergic fibers after SCI. Together, our data show that OSM is produced at the lesion site, where it protects the CNS from further damage and promotes recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kopp MA, Druschel C, Meisel C, Liebscher T, Prilipp E, Watzlawick R, Cinelli P, Niedeggen A, Schaser KD, Wanner GA, Curt A, Lindemann G, Nugaeva N, Fehlings MG, Vajkoczy P, Cabraja M, Dengler J, Ertel W, Ekkernkamp A, Martus P, Volk HD, Unterwalder N, Kolsch U, Brommer B, Hellmann RC, Ossami Saidi RR, Laginha I, Pruss H, Failli V, Dirnagl U, Schwab JM (2013) The SCIentinel study—prospective multicenter study to define the spinal cord injury-induced immune depression syndrome (SCI-IDS) - study protocol and interim feasibility data. BMC Neurol 13(1):168. doi:10.1186/1471-2377-13-168

    Article  PubMed Central  PubMed  Google Scholar 

  2. Donnelly DJ, Popovich PG (2008) Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury. Exp Neurol 209(2):378–388. doi:10.1016/j.expneurol.2007.06.009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Vidal PM, Lemmens E, Dooley D, Hendrix S (2013) The role of “anti-inflammatory” cytokines in axon regeneration. Cytokine Growth Factor Rev 24(1):1–12. doi:10.1016/j.cytogfr.2012.08.008

    Article  CAS  PubMed  Google Scholar 

  4. Gupta R, Bathen ME, Smith JS, Levi AD, Bhatia NN, Steward O (2010) Advances in the management of spinal cord injury. J Am Acad Orthop Surg 18(4):210–222

    PubMed  Google Scholar 

  5. Dooley D, Vidal P, Hendrix S (2013) Immunopharmacological intervention for successful neural stem cell therapy: New perspectives in CNS neurogenesis and repair. Pharmacol Ther. doi:10.1016/j.pharmthera.2013.08.001

    PubMed  Google Scholar 

  6. Slaets H, Hendriks JJ, Stinissen P, Kilpatrick TJ, Hellings N (2010) Therapeutic potential of LIF in multiple sclerosis. Trends Mol Med 16(11):493–500. doi:10.1016/j.molmed.2010.08.007

    Article  CAS  PubMed  Google Scholar 

  7. Lacroix S, Chang L, Rose-John S, Tuszynski MH (2002) Delivery of hyper-interleukin-6 to the injured spinal cord increases neutrophil and macrophage infiltration and inhibits axonal growth. J Comp Neurol 454(3):213–228. doi:10.1002/cne.10407

    Article  CAS  PubMed  Google Scholar 

  8. Slaets H, Dumont D, Vanderlocht J, Noben JP, Leprince P, Robben J, Hendriks J, Stinissen P, Hellings N (2008) Leukemia inhibitory factor induces an antiapoptotic response in oligodendrocytes through Akt-phosphorylation and up-regulation of 14-3-3. Proteomics 8(6):1237–1247. doi:10.1002/pmic.200700641

    Article  CAS  PubMed  Google Scholar 

  9. Kerr BJ, Patterson PH (2005) Leukemia inhibitory factor promotes oligodendrocyte survival after spinal cord injury. Glia 51(1):73–79. doi:10.1002/glia.20177

    Article  PubMed  Google Scholar 

  10. Kaplin AI, Deshpande DM, Scott E, Krishnan C, Carmen JS, Shats I, Martinez T, Drummond J, Dike S, Pletnikov M, Keswani SC, Moran TH, Pardo CA, Calabresi PA, Kerr DA (2005) IL-6 induces regionally selective spinal cord injury in patients with the neuroinflammatory disorder transverse myelitis. J Clin Invest 115(10):2731–2741. doi:10.1172/JCI25141

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Fearon U, Mullan R, Markham T, Connolly M, Sullivan S, Poole AR, FitzGerald O, Bresnihan B, Veale DJ (2006) Oncostatin M induces angiogenesis and cartilage degradation in rheumatoid arthritis synovial tissue and human cartilage cocultures. Arthritis Rheum 54(10):3152–3162. doi:10.1002/art.22161

    Article  CAS  PubMed  Google Scholar 

  12. Botelho FM, Rangel-Moreno J, Fritz D, Randall TD, Xing Z, Richards CD (2013) Pulmonary expression of oncostatin M (OSM) promotes inducible BALT formation independently of IL-6, despite a role for IL-6 in OSM-driven pulmonary inflammation. J Immunol 191(3):1453–1464. doi:10.4049/jimmunol.1203318

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Boniface K, Diveu C, Morel F, Pedretti N, Froger J, Ravon E, Garcia M, Venereau E, Preisser L, Guignouard E, Guillet G, Dagregorio G, Pene J, Moles JP, Yssel H, Chevalier S, Bernard FX, Gascan H, Lecron JC (2007) Oncostatin M secreted by skin infiltrating T lymphocytes is a potent keratinocyte activator involved in skin inflammation. J Immunol 178(7):4615–4622

    Article  CAS  PubMed  Google Scholar 

  14. Giot JP, Paris I, Levillain P, Huguier V, Charreau S, Delwail A, Garcia M, Garnier J, Bernard FX, Dagregorio G, Guillet G, Morel F, Lecron JC, Favot L (2013) Involvement of IL-1 and oncostatin M in acanthosis associated with hypertensive leg ulcer. Am J Pathol 182(3):806–818. doi:10.1016/j.ajpath.2012.11.030

    Article  CAS  PubMed  Google Scholar 

  15. Ensoli F, Fiorelli V, DeCristofaro M, Santini Muratori D, Novi A, Vannelli B, Thiele CJ, Luzi G, Aiuti F (1999) Inflammatory cytokines and HIV-1-associated neurodegeneration: oncostatin-M produced by mononuclear cells from HIV-1-infected individuals induces apoptosis of primary neurons. J Immunol 162(10):6268–6277

    CAS  PubMed  Google Scholar 

  16. Nelissen S, Vangansewinkel T, Geurts N, Geboes L, Lemmens E, Vidal PM, Lemmens S, Willems L, Boato F, Dooley D, Pehl D, Pejler G, Maurer M, Metz M, Hendrix S (2013) Mast cells protect from post-traumatic spinal cord damage in mice by degrading inflammation-associated cytokines via mouse mast cell protease 4. Neurobiol Dis 62C:260–272. doi:10.1016/j.nbd.2013.09.012

    Google Scholar 

  17. Ruprecht K, Kuhlmann T, Seif F, Hummel V, Kruse N, Bruck W, Rieckmann P (2001) Effects of oncostatin M on human cerebral endothelial cells and expression in inflammatory brain lesions. J Neuropathol Exp Neurol 60(11):1087–1098

    CAS  PubMed  Google Scholar 

  18. Jankowsky JL, Patterson PH (1999) Differential regulation of cytokine expression following pilocarpine-induced seizure. Exp Neurol 159(2):333–346. doi:10.1006/exnr.1999.7137

    Article  CAS  PubMed  Google Scholar 

  19. Cho N, Nguyen DH, Satkunendrarajah K, Branch DR, Fehlings MG (2012) Evaluating the role of IL-11, a novel cytokine in the IL-6 family, in a mouse model of spinal cord injury. J Neuroinflammation 9:134. doi:10.1186/1742-2094-9-134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Guerrero AR, Uchida K, Nakajima H, Watanabe S, Nakamura M, Johnson WE, Baba H (2012) Blockade of interleukin-6 signaling inhibits the classic pathway and promotes an alternative pathway of macrophage activation after spinal cord injury in mice. J Neuroinflammation 9:40. doi:10.1186/1742-2094-9-40

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Mukaino M, Nakamura M, Yamada O, Okada S, Morikawa S, Renault-Mihara F, Iwanami A, Ikegami T, Ohsugi Y, Tsuji O, Katoh H, Matsuzaki Y, Toyama Y, Liu M, Okano H (2010) Anti-IL-6-receptor antibody promotes repair of spinal cord injury by inducing microglia-dominant inflammation. Exp Neurol 224(2):403–414. doi:10.1016/j.expneurol.2010.04.020

    Article  CAS  PubMed  Google Scholar 

  22. Cafferty WB, Gardiner NJ, Das P, Qiu J, McMahon SB, Thompson SW (2004) Conditioning injury-induced spinal axon regeneration fails in interleukin-6 knock-out mice. J Neurosci Off J Soc Neurosci 24(18):4432–4443. doi:10.1523/JNEUROSCI.2245-02.2004

    Article  CAS  Google Scholar 

  23. Kerr BJ, Patterson PH (2004) Potent pro-inflammatory actions of leukemia inhibitory factor in the spinal cord of the adult mouse. Exp Neurol 188(2):391–407. doi:10.1016/j.expneurol.2004.04.012

    Article  CAS  PubMed  Google Scholar 

  24. Weiss TW, Samson AL, Niego B, Daniel PB, Medcalf RL (2006) Oncostatin M is a neuroprotective cytokine that inhibits excitotoxic injury in vitro and in vivo. FASEB J Off Publ Fed Am Soc Exp Biol 20(13):2369–2371. doi:10.1096/fj.06-5850fje

    CAS  Google Scholar 

  25. Xia X, Li Y, Huang D, Wang Z, Luo L, Song Y, Zhao L, Wen R (2011) Oncostatin M protects rod and cone photoreceptors and promotes regeneration of cone outer segment in a rat model of retinal degeneration. PLoS One 6(3):e18282. doi:10.1371/journal.pone.0018282

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Moidunny S, Dias RB, Wesseling E, Sekino Y, Boddeke HW, Sebastiao AM, Biber K (2010) Interleukin-6-type cytokines in neuroprotection and neuromodulation: oncostatin M, but not leukemia inhibitory factor, requires neuronal adenosine A1 receptor function. J Neurochem 114(6):1667–1677. doi:10.1111/j.1471-4159.2010.06881.x

    Article  CAS  PubMed  Google Scholar 

  27. Baker BJ, Park KW, Qin H, Ma X, Benveniste EN (2010) IL-27 inhibits OSM-mediated TNF-alpha and iNOS gene expression in microglia. Glia 58(9):1082–1093. doi:10.1002/glia.20989

    Article  PubMed Central  PubMed  Google Scholar 

  28. Komori T, Tanaka M, Senba E, Miyajima A, Morikawa Y (2013) Lack of oncostatin M receptor beta leads to adipose tissue inflammation and insulin resistance by switching macrophage phenotype. J Biol Chem 288(30):21861–21875. doi:10.1074/jbc.M113.461905

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Korzus E, Nagase H, Rydell R, Travis J (1997) The mitogen-activated protein kinase and JAK-STAT signaling pathways are required for an oncostatin M-responsive element-mediated activation of matrix metalloproteinase 1 gene expression. J Biol Chem 272(2):1188–1196

    Article  CAS  PubMed  Google Scholar 

  30. Repovic P, Mi K, Benveniste EN (2003) Oncostatin M enhances the expression of prostaglandin E2 and cyclooxygenase-2 in astrocytes: synergy with interleukin-1beta, tumor necrosis factor-alpha, and bacterial lipopolysaccharide. Glia 42(4):433–446. doi:10.1002/glia.10182

    Article  PubMed  Google Scholar 

  31. Ganesh K, Das A, Dickerson R, Khanna S, Parinandi NL, Gordillo GM, Sen CK, Roy S (2012) Prostaglandin E2 Induces Oncostatin M Expression in Human Chronic Wound Macrophages through Axl Receptor Tyrosine Kinase Pathway. J Immunol. doi:10.4049/jimmunol.1102762

    PubMed Central  PubMed  Google Scholar 

  32. Metcalfe SM (2011) LIF in the regulation of T-cell fate and as a potential therapeutic. Genes Immun 12(3):157–168. doi:10.1038/gene.2011.9

    Article  CAS  PubMed  Google Scholar 

  33. Walsh JT, Kipnis J (2011) Regulatory T cells in CNS injury: the simple, the complex and the confused. Trends Mol Med 17(10):541–547. doi:10.1016/j.molmed.2011.05.012

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Glezer I, Rivest S (2010) Oncostatin M is a novel glucocorticoid-dependent neuroinflammatory factor that enhances oligodendrocyte precursor cell activity in demyelinated sites. Brain Behav Immun 24(5):695–704. doi:10.1016/j.bbi.2010.01.005

    Article  CAS  PubMed  Google Scholar 

  35. Vidal PM, Lemmens E, Avila A, Vangansewinkel T, Chalaris A, Rose-John S, Hendrix S (2013) ADAM17 is a survival factor for microglial cells in vitro and in vivo after spinal cord injury in mice. Cell Death Dis 4:e954. doi:10.1038/cddis.2013.466

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Boato F, Hendrix S, Huelsenbeck SC, Hofmann F, Grosse G, Djalali S, Klimaschewski L, Auer M, Just I, Ahnert-Hilger G, Holtje M (2010) C3 peptide enhances recovery from spinal cord injury by improved regenerative growth of descending fiber tracts. J Cell Sci 123(Pt 10):1652–1662. doi:10.1242/jcs.066050

    Article  PubMed  Google Scholar 

  37. Basso DM, Fisher LC, Anderson AJ, Jakeman LB, McTigue DM, Popovich PG (2006) Basso Mouse Scale for locomotion detects differences in recovery after spinal cord injury in five common mouse strains. J Neurotrauma 23(5):635–659. doi:10.1089/neu.2006.23.635

    Article  PubMed  Google Scholar 

  38. Sheng H, Wang H, Homi HM, Spasojevic I, Batinic-Haberle I, Pearlstein RD, Warner DS (2004) A no-laminectomy spinal cord compression injury model in mice. J Neurotrauma 21(5):595–603. doi:10.1089/089771504774129928

    Article  PubMed  Google Scholar 

  39. Beck KD, Nguyen HX, Galvan MD, Salazar DL, Woodruff TM, Anderson AJ (2010) Quantitative analysis of cellular inflammation after traumatic spinal cord injury: evidence for a multiphasic inflammatory response in the acute to chronic environment. Brain J Neurol 133(Pt 2):433–447. doi:10.1093/brain/awp322

    Article  Google Scholar 

  40. Boato F, Rosenberger K, Nelissen S, Geboes L, Peters EM, Nitsch R, Hendrix S (2013) Absence of IL-1beta positively affects neurological outcome, lesion development and axonal plasticity after spinal cord injury. J Neuroinflammation 10:6. doi:10.1186/1742-2094-10-6

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Holtje M, Djalali S, Hofmann F, Munster-Wandowski A, Hendrix S, Boato F, Dreger SC, Grosse G, Henneberger C, Grantyn R, Just I, Ahnert-Hilger G (2009) A 29-amino acid fragment of Clostridium botulinum C3 protein enhances neuronal outgrowth, connectivity, and reinnervation. FASEB J Off Publ Fed Am Soc Exp Biol 23(4):1115–1126. doi:10.1096/fj.08-116855

    Google Scholar 

  42. Boato F, Hechler D, Rosenberger K, Ludecke D, Peters EM, Nitsch R, Hendrix S (2011) Interleukin-1 beta and neurotrophin-3 synergistically promote neurite growth in vitro. J Neuroinflammation 8:183. doi:10.1186/1742-2094-8-183

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by grants from NEURONET Methusalem and from the Flemish Fund for Scientific Research (FWO Vlaanderen) to H.S (1.5.121.12 N), to N.H. (G04441N), and to S.H. (G.0834.11 N, G.0389.12 N, G0A1413N).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sven Hendrix or Niels Hellings.

Additional information

Niels Hellings and Sven Hendrix are equally contributing senior authors to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Kinetics of mRNA expression of LIF, IL-6, CNTF and their specific receptor subunits after spinal cord injury. RNA was isolated from a standardized piece of 1 cm around the spinal cord lesion, at indicated time points following hemisection (SCI) or laminectomy without touching the spinal cord (sham). Quantitative PCR revealed upregulation of LIF (a) and IL-6 expression (b) but no induction of CNTF (c) or the specific receptor subunits (d, e, f) after injury. * indicates P<0,05; ** indicates P<0,01 compared to levels in untouched mice (0h) as analyzed by Kruskall Wallis test followed by Dunn’s multiple comparison test. (GIF 33 kb)

High Resolution Image

(TIFF 34398 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slaets, H., Nelissen, S., Janssens, K. et al. Oncostatin M Reduces Lesion Size and Promotes Functional Recovery and Neurite Outgrowth After Spinal Cord Injury. Mol Neurobiol 50, 1142–1151 (2014). https://doi.org/10.1007/s12035-014-8795-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8795-5

Keywords

Navigation