Skip to main content
Log in

Brain Activation of SIRT1: Role in Neuropathology

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Sirtuins (SIRTs) are a family of regulatory proteins of genetic information with a high degree of conservation among species. The SIRTs are heavily involved in several physiological functions including control of gene expression, metabolism, and aging. SIRT1 has been the most studied sirtuin and plays important role in the prevention and progression of neurodegenerative diseases acting in different pathways of proteins involved in brain function. SIRT1 activation regulates important genes that also exert neuroprotective actions such as p53, nuclear factor kappa B, peroxisome proliferator-activated receptor-gamma (PPARγ), PPARγ coactivator-1α, liver X receptor, and forkhead box O. It is well established in literature that growing population aging, oxidative stress, inflammation, and genetic factors are important conditions to development of neurodegenerative disorders. However, the exact pathophysiological mechanisms leading to these diseases remain obscure. The sirtuins show strong potential to become valuable predictive and prognostic markers for diseases and as therapeutic targets for the treatment of a variety of neurodegenerative disorders. In this context, the aim of the current review is to present an actual view of the potential role of SIRT1 in modulating the interaction between target genes and neurodegenerative diseases on the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. WHO (2006) Engaging for health, Eleventh General Programme of Work, 2006–2015: a global health agenda. World Health Organization, Geneva

    Google Scholar 

  2. Donmez G (2012) The neurobiology of sirtuins and their role in neurodegeneration. Trends Pharmacol Sci 33(9):494–501

    CAS  PubMed  Google Scholar 

  3. Vauzour D (2012) Dietary polyphenols as modulators of brain functions: biological actions and molecular mechanisms underpinning their beneficial effects. Oxid Med Cell Longev 2012:914273

    PubMed Central  PubMed  Google Scholar 

  4. Han SH (2009) Potential role of sirtuin as a therapeutic target for neurodegenerative diseases. J Clin Neurol 5(3):120–125

    PubMed Central  PubMed  Google Scholar 

  5. Beckman KB, Ames BN (1998) The free radical theory of aging matures. Physiol Rev 78(2):547–581

    CAS  PubMed  Google Scholar 

  6. Sun AY, Wang Q, Simonyi A, Sun GY (2010) Resveratrol as a therapeutic agent for neurodegenerative diseases. Mol Neurobiol 41(2–3):375–383

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Jellinger KA, Stadelmann C (2001) Problems of cell death in neurodegeneration and Alzheimer's disease. J Alzheimers Dis 3(1):31–40

    CAS  PubMed  Google Scholar 

  8. Spires TL, Hyman BT (2005) Transgenic models of Alzheimer's disease: learning from animals. NeuroRx 2(3):423–437

    PubMed Central  PubMed  Google Scholar 

  9. Rine J, Herskowitz I (1987) Four genes responsible for a position effect on expression from HML and HMR in Saccharomyces cerevisiae. Genetics 116(1):9–22

    CAS  PubMed  Google Scholar 

  10. Kelly G (2010) A review of the sirtuin system, its clinical implications, and the potential role of dietary activators like resveratrol: part 1. Altern Med Rev 15(3):245–263

    PubMed  Google Scholar 

  11. Kelly GS (2010) A review of the sirtuin system, its clinical implications, and the potential role of dietary activators like resveratrol: part 2. Altern Med Rev 15(4):313–328

    PubMed  Google Scholar 

  12. Anekonda TS, Reddy PH (2006) Neuronal protection by sirtuins in Alzheimer's disease. J Neurochem 96(2):305–313

    CAS  PubMed  Google Scholar 

  13. Nunomura A, Moreira PI, Lee HG, Zhu X, Castellani RJ, Smith MA et al (2007) Neuronal death and survival under oxidative stress in Alzheimer and Parkinson diseases. CNS NeurolDisord Drug Targets 6(6):411–423

    CAS  Google Scholar 

  14. Frye RA (2000) Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun 273(2):793–798

    CAS  PubMed  Google Scholar 

  15. Michan S, Sinclair D (2007) Sirtuins in mammals: insights into their biological function. Biochem J 404(1):1–13

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Zakhary SM, Ayubcha D, Dileo JN, Jose R, Leheste JR, Horowitz JM et al (2010) Distribution analysis of deacetylase SIRT1 in rodent and human nervous systems. Anat Rec (Hoboken) 293(6):1024–1032

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Rahman S, Islam R (2011) Mammalian Sirt1: insights on its biological functions. Cell Commun Signal 9:11

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Imai S, Armstrong CM, Kaeberlein M, Guarente L (2000) Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403(6771):795–800

    CAS  PubMed  Google Scholar 

  19. Sinclair D (2005) Sirtuins for healthy neurons. Nat Genet 37(4):339–340

    CAS  PubMed  Google Scholar 

  20. Sakamoto J, Miura T, Shimamoto K, Horio Y (2004) Predominant expression of Sir2alpha, an NAD-dependent histone deacetylase, in the embryonic mouse heart and brain. FEBS Lett 556(1–3):281–286

    CAS  PubMed  Google Scholar 

  21. Michishita E, Park JY, Burneskis JM, Barrett JC, Horikawa I (2005) Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell 16(10):4623–4635

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Sahar S, Sassone-Corsi P (2012) Circadian rhythms and memory formation: regulation by chromatin remodeling. Front Mol Neurosci 5:37

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Hisahara S, Chiba S, Matsumoto H, Tanno M, Yagi H, Shimohama S et al (2008) Histone deacetylase SIRT1 modulates neuronal differentiation by its nuclear translocation. Proc NatlAcadSci U S A 105(40):15599–15604

    CAS  Google Scholar 

  24. Ramadori G, Lee CE, Bookout AL, Lee S, Williams KW, Anderson J et al (2008) Brain SIRT1: anatomical distribution and regulation by energy availability. J Neurosci 28(40):9989–9996

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Barrett RM, Wood MA (2008) Beyond transcription factors: the role of chromatin modifying enzymes in regulating transcription required for memory. Learn Mem 15(7):460–467

    CAS  PubMed  Google Scholar 

  26. Day JJ, Sweatt JD (2011) Cognitive neuroepigenetics: a role for epigenetic mechanisms in learning and memory. Neurobiol Learn Mem 96(1):2–12

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Zocchi L, Sassone-Corsi P (2010) Joining the dots: from chromatin remodeling to neuronal plasticity. CurrOpinNeurobiol 20(4):432–440

    CAS  Google Scholar 

  28. Gan L, Mucke L (2008) Paths of convergence: sirtuins in aging and neurodegeneration. Neuron 58(1):10–14

    CAS  PubMed  Google Scholar 

  29. Zhang F, Wang S, Gan L, Vosler PS, Gao Y, Zigmond MJ et al (2011) Protective effects and mechanisms of sirtuins in the nervous system. ProgNeurobiol 95(3):373–395

    CAS  Google Scholar 

  30. Li Y, Xu W, McBurney MW, Longo VD (2008) SirT1 inhibition reduces IGF-I/IRS-2/Ras/ERK1/2 signaling and protects neurons. Cell Metab 8(1):38–48

    PubMed Central  PubMed  Google Scholar 

  31. Chang HM, Wu UI, Lan CT (2009) Melatonin preserves longevity protein (sirtuin 1) expression in the hippocampus of total sleep-deprived rats. J Pineal Res 47(3):211–220

    CAS  PubMed  Google Scholar 

  32. Luo J, Nikolaev AY, Imai S, Chen D, Su F, Shiloh A et al (2001) Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 107(2):137–148

    CAS  PubMed  Google Scholar 

  33. Nemoto S, Fergusson MM, Finkel T (2005) SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1{alpha}. J Biol Chem 280(16):16456–16460

    CAS  PubMed  Google Scholar 

  34. Li X, Zhang S, Blander G, Tse JG, Krieger M, Guarente L (2007) SIRT1 deacetylates and positively regulates the nuclear receptor LXR. Mol Cell 28(1):91–106

    PubMed  Google Scholar 

  35. Maiese K, Chong ZZ, Shang YC, Wang S (2011) Translating cell survival and cell longevity into treatment strategies with SIRT1. Rom J MorpholEmbryol 52(4):1173–1185

    CAS  Google Scholar 

  36. Vaziri H, Dessain SK, Ng Eaton E, Imai SI, Frye RA, Pandita TK et al (2001) hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107(2):149–159

    CAS  PubMed  Google Scholar 

  37. Lemieux ME, Yang X, Jardine K, He X, Jacobsen KX, Staines WA et al (2005) The Sirt1 deacetylase modulates the insulin-like growth factor signaling pathway in mammals. Mech Ageing Dev 126(10):1097–1105

    CAS  PubMed  Google Scholar 

  38. Huang J, Gan Q, Han L, Li J, Zhang H, Sun Y et al (2008) SIRT1 overexpression antagonizes cellular senescence with activated ERK/S6k1 signaling in human diploid fibroblasts. PLoS One 3(3):e1710

    PubMed Central  PubMed  Google Scholar 

  39. Zhang J (2007) The direct involvement of SirT1 in insulin-induced insulin receptor substrate-2 tyrosine phosphorylation. J Biol Chem 282(47):34356–34364

    CAS  PubMed  Google Scholar 

  40. Lu T, Pan Y, Kao SY, Li C, Kohane I, Chan J et al (2004) Gene regulation and DNA damage in the ageing human brain. Nature 429(6994):883–891

    CAS  PubMed  Google Scholar 

  41. Joseph SB, Castrillo A, Laffitte BA, Mangelsdorf DJ, Tontonoz P (2003) Reciprocal regulation of inflammation and lipid metabolism by liver X receptors. Nat Med 9(2):213–219

    CAS  PubMed  Google Scholar 

  42. Sun Y, Yao J, Kim TW, Tall AR (2003) Expression of liver X receptor target genes decreases cellular amyloid beta peptide secretion. J Biol Chem 278(30):27688–27694

    CAS  PubMed  Google Scholar 

  43. Zelcer N, Khanlou N, Clare R, Jiang Q, Reed-Geaghan EG, Landreth GE et al (2007) Attenuation of neuroinflammation and Alzheimer's disease pathology by liver x receptors. Proc NatlAcadSci U S A 104(25):10601–10606

    CAS  Google Scholar 

  44. Kabe Y, Ando K, Hirao S, Yoshida M, Handa H (2005) Redox regulation of NF-kappaB activation: distinct redox regulation between the cytoplasm and the nucleus. Antioxid Redox Signal 7(3–4):395–403

    CAS  PubMed  Google Scholar 

  45. Mattson MP, Meffert MK (2006) Roles for NF-kappaB in nerve cell survival, plasticity, and disease. Cell Death Differ 13(5):852–860

    CAS  PubMed  Google Scholar 

  46. Cao SX, Dhahbi JM, Mote PL, Spindler SR (2001) Genomic profiling of short- and long-term caloric restriction effects in the liver of aging mice. Proc NatlAcadSci U S A 98(19):10630–10635

    CAS  Google Scholar 

  47. Mattson MP, Duan W, Chan SL, Cheng A, Haughey N, Gary DS et al (2002) Neuroprotective and neurorestorative signal transduction mechanisms in brain aging: modification by genes, diet and behavior. Neurobiol Aging 23(5):695–705

    CAS  PubMed  Google Scholar 

  48. Muchowski PJ, Wacker JL (2005) Modulation of neurodegeneration by molecular chaperones. Nat Rev Neurosci 6(1):11–22

    CAS  PubMed  Google Scholar 

  49. Van Ham TJ, Breitling R, Swertz MA, Nollen EA (2009) Neurodegenerative diseases: lessons from genome-wide screens in small model organisms. EMBO Mol Med 1:360–370

    PubMed Central  PubMed  Google Scholar 

  50. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297(5580):353–356

    CAS  PubMed  Google Scholar 

  51. Selkoe DJ (2001) Alzheimer's disease results from the cerebral accumulation and cytotoxicity of amyloid beta-protein. J Alzheimers Dis 3:75–80

    CAS  PubMed  Google Scholar 

  52. Tanzi RE, Bertram L (2005) Twenty years of the Alzheimer's disease amyloid hypothesis: a genetic perspective. Cell 120:545–555

    CAS  PubMed  Google Scholar 

  53. Walsh DM, Selkoe DJ (2007) A beta oligomers—a decade of discovery. J Neurochem 101:1172–1184

    CAS  PubMed  Google Scholar 

  54. Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120(4):483–495

    CAS  PubMed  Google Scholar 

  55. Beal MF (2005) Mitochondria take center stage in aging and neurodegeneration. Ann Neurol 58(4):495–505

    CAS  PubMed  Google Scholar 

  56. Gibson GE, Blass JP, Beal MF, Bunik V (2005) The alpha-ketoglutarate-dehydrogenase complex: a mediator between mitochondria and oxidative stress in neurodegeneration. Mol Neurobiol 31(1–3):43–63

    CAS  PubMed  Google Scholar 

  57. Selkoe DJ (2006) Amyloid beta-peptide is produced by cultured cells during normal metabolism: a reprise. J Alzheimers Dis 9(3 Suppl):163–168

    CAS  PubMed  Google Scholar 

  58. Gandy S, Martins RN, Buxbaum J (2003) Molecular and cellular basis for anti-amyloid therapy in Alzheimer disease. Alzheimer Dis Assoc Disord 17(4):259–266

    PubMed  Google Scholar 

  59. Selkoe DJ, Podlisny MB (2002) Deciphering the genetic basis of Alzheimer's disease. Annu Rev Genomics Hum Genet 3:67–99

    CAS  PubMed  Google Scholar 

  60. Vincent B (2004) ADAM proteases: protective role in Alzheimer's and prion diseases? Curr Alzheimer Res 1(3):165–174

    CAS  PubMed  Google Scholar 

  61. Lammich S, Kojro E, Postina R, Gilbert S, Pfeiffer R, Jasionowski M et al (1999) Constitutive and regulated alpha-secretase cleavage of Alzheimer's amyloid precursor protein by a disintegrin metalloprotease. Proc NatlAcadSci U S A 96(7):3922–3927

    CAS  Google Scholar 

  62. Butterfield DA, Hensley K, Harris M, Mattson M, Carney J (1994) beta-Amyloid peptide free radical fragments initiate synaptosomal lipoperoxidation in a sequence-specific fashion: implications to Alzheimer's disease. Biochem Biophys Res Commun 200(2):710–715

    CAS  PubMed  Google Scholar 

  63. Hensley K, Carney JM, Mattson MP, Aksenova M, Harris M, Wu JF et al (1994) A model for beta-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer disease. Proc NatlAcadSci U S A 91(8):3270–3274

    CAS  Google Scholar 

  64. Huang X, Cuajungco MP, Atwood CS, Hartshorn MA, Tyndall JD, Hanson GR et al (1999) Cu(II) potentiation of Alzheimer abeta neurotoxicity. Correlation with cell-free hydrogen peroxide production and metal reduction. J Biol Chem 274(52):37111–37116

    CAS  PubMed  Google Scholar 

  65. McGeer PL, McGeer EG (1995) The inflammatory response system of brain: implications for therapy of Alzheimer and other neurodegenerative diseases. Brain Res Brain Res Rev 21(2):195–218

    CAS  PubMed  Google Scholar 

  66. Monsonego A, Weiner HL (2003) Immunotherapeutic approaches to Alzheimer's disease. Science 302(5646):834–838

    CAS  PubMed  Google Scholar 

  67. Qin W, Chachich M, Lane M, Roth G, Bryant M, de Cabo R et al (2006) Calorie restriction attenuates Alzheimer's disease type brain amyloidosis in squirrel monkeys (Saimiri sciureus). J Alzheimers Dis 10(4):417–422

    CAS  PubMed  Google Scholar 

  68. Lee IH, Cao L, Mostoslavsky R, Lombard DB, Liu J, Bruns NE et al (2008) A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc NatlAcadSci U S A 105(9):3374–3379

    CAS  Google Scholar 

  69. Qin Z, Sun Z, Huang J, Hu Y, Wu Z, Mei B (2008) Mutated recombinant human glucagon-like peptide-1 protects SH-SY5Y cells from apoptosis induced by amyloid-beta peptide (1–42). NeurosciLett 444(3):217–221

    CAS  Google Scholar 

  70. Araki T, Sasaki Y, Milbrandt J (2004) Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science 305(5686):1010–1013

    CAS  PubMed  Google Scholar 

  71. Bedalov A, Simon JA (2004) Neuroscience. NAD to the rescue. Science 305(5686):954–955

    CAS  PubMed  Google Scholar 

  72. Patel NV, Gordon MN, Connor KE, Good RA, Engelman RW, Mason J et al (2005) Caloric restriction attenuates Abeta-deposition in Alzheimer transgenic models. Neurobiol Aging 26(7):995–1000

    CAS  PubMed  Google Scholar 

  73. Wang J, Ho L, Qin W, Rocher AB, Seror I, Humala N et al (2005) Caloric restriction attenuates beta-amyloid neuropathology in a mouse model of Alzheimer's disease. FASEB J 19(6):659–661

    PubMed  Google Scholar 

  74. Duan W, Mattson MP (1999) Dietary restriction and 2-deoxyglucose administration improve behavioral outcome and reduce degeneration of dopaminergic neurons in models of Parkinson’s disease. J Neurosci Res 57:195–206

    CAS  PubMed  Google Scholar 

  75. Chen J, Zhou Y, Mueller-Steiner S, Chen LF, Kwon H, Yi S et al (2005) SIRT1 protects against microglia-dependent amyloid-beta toxicity through inhibiting NF-kappaB signaling. J Biol Chem 280(48):40364–40374

    CAS  PubMed  Google Scholar 

  76. Valerio A, Boroni F, Benarese M, Sarnico I, Ghisi V, Bresciani LG et al (2006) NF-kappaB pathway: a target for preventing beta-amyloid (Abeta)-induced neuronal damage and Abeta42 production. Eur J Neurosci 23(7):1711–1720

    PubMed  Google Scholar 

  77. Yeung F, Hoberg JE, Ramsey CS, Keller MD, Jones DR, Frye RA et al (2004) Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J 23(12):2369–2380

    CAS  PubMed  Google Scholar 

  78. Mattson MP (2003) Will caloric restriction and folate protect against AD and PD? Neurology 60(4):690–695

    CAS  PubMed  Google Scholar 

  79. Nathan C, Calingasan N, Nezezon J, Ding A, Lucia MS, La Perle K et al (2005) Protection from Alzheimer's-like disease in the mouse by genetic ablation of inducible nitric oxide synthase. J Exp Med 202(9):1163–1169

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Donmez G, Wang D, Cohen DE, Guarente L (2010) SIRT1 suppresses beta-amyloid production by activating the alpha-secretase gene ADAM10. Cell 142(2):320–332

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Kim EJ, Kho JH, Kang MR, Um SJ (2007) Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activity. Mol Cell 28(2):277–290

    CAS  PubMed  Google Scholar 

  82. Min SW, Cho SH, Zhou Y, Schroeder S, Haroutunian V, Seeley WW et al (2010) Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron 67(6):953–966

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Qin W, Yang T, Ho L, Zhao Z, Wang J, Chen L et al (2006) Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction. J Biol Chem 281(31):21745–21754

    CAS  PubMed  Google Scholar 

  84. You H, Mak TW (2005) Crosstalk between p53 and FOXO transcription factors. Cell Cycle 4(1):37–38

    CAS  PubMed  Google Scholar 

  85. Gilley J, Coffer PJ, Ham J (2003) FOXO transcription factors directly activate bim gene expression and promote apoptosis in sympathetic neurons. J Cell Biol 162(4):613–622

    CAS  PubMed  Google Scholar 

  86. Devine MJ, Gwinn K, Singleton A, Hardy J (2011) Parkinson's disease and alpha-synuclein expression. Mov Disord 26(12):2160–2168

    PubMed  Google Scholar 

  87. Zhang A, Wang H, Qin X, Pang S, Yan B (2012) Genetic analysis of SIRT1 gene promoter in sporadic Parkinson's disease. Biochem Biophys Res Commun 422(4):693–696

    CAS  PubMed  Google Scholar 

  88. Donmez G, Arun A, Chung CY, McLean PJ, Lindquist S, Guarente L (2012) SIRT1 protects against alpha-synuclein aggregation by activating molecular chaperones. J Neurosci 32(1):124–132

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Albani D, Polito L, Batelli S, De Mauro S, Fracasso C, Martelli G et al (2009) The SIRT1 activator resveratrol protects SK-N-BE cells from oxidative stress and against toxicity caused by alpha-synuclein or amyloid-beta (1–42) peptide. J Neurochem 110(5):1445–1456

    CAS  PubMed  Google Scholar 

  90. Raghavan A, Shah ZA (2012) Sirtuins in neurodegenerative diseases: a biological–chemical perspective. Neurodegener Dis 9(1):1–10

    CAS  PubMed  Google Scholar 

  91. Wareski P, Vaarmann A, Choubey V, Safiulina D, Liiv J, Kuum M, Kaasik A (2009) PGC-1{alpha} andPGC-1{beta} regulate mitochondrial density in neurons. J Biol Chem 284:21379–21385

    CAS  PubMed  Google Scholar 

  92. Chao J, Yu MS, Ho YS, Wang M, Chang RC (2008) Dietary oxyresveratrol prevents parkinsonian mimetic 6-hydroxydopamine neurotoxicity. Free Radic Biol Med 45:1019–1026

    CAS  PubMed  Google Scholar 

  93. Okawara M, Katsuki H, Kurimoto E, Shibata H, Kume T, Akaike A (2007) Resveratrol protects dopaminergic neurons in midbrain slice culture from multiple insults. Biochem Pharmacol 73:550–560

    CAS  PubMed  Google Scholar 

  94. Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443(7113):787–795

    CAS  PubMed  Google Scholar 

  95. Burns RS, LeWitt PA, Ebert MH, Pakkenberg H, Kopin IJ (1985) The clinical syndrome of striatal dopamine deficiency. Parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). N Engl J Med 312(22):1418–1421

    CAS  PubMed  Google Scholar 

  96. Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219(4587):979–980

    CAS  PubMed  Google Scholar 

  97. Borland MK, Trimmer PA, Rubinstein JD, Keeney PM, Mohanakumar K, Liu L et al (2008) Chronic, low-dose rotenone reproduces Lewy neurites found in early stages of Parkinson's disease, reduces mitochondrial movement and slowly kills differentiated SH-SY5Y neural cells. Mol Neurodegener 3:21

    PubMed Central  PubMed  Google Scholar 

  98. Gomez C, Bandez MJ, Navarro A (2007) Pesticides and impairment of mitochondrial function in relation with the parkinsonian syndrome. Front Biosci 12:1079–1093

    CAS  PubMed  Google Scholar 

  99. Pallas M, Verdaguer E, Tajes M, Gutierrez-Cuesta J, Camins A (2008) Modulation of sirtuins: new targets for antiageing. Recent Pat CNS Drug Discov 3(1):61–69

    CAS  PubMed  Google Scholar 

  100. Gatchel JR, Zoghbi HY (2005) Diseases of unstable repeat expansion: mechanisms and common principles. Nat Rev Genet 6(10):743–755

    CAS  PubMed  Google Scholar 

  101. Huber K, Superti-Furga G (2011) After the grape rush: sirtuins as epigenetic drug targets in neurodegenerative disorders. Bioorg Med Chem 19(12):3616–3624

    CAS  PubMed  Google Scholar 

  102. Anonymous (1993) The Huntington’s Disease Collaborative Research Group. Cell 72:971–983

    Google Scholar 

  103. Parker JA, Arango M, Abderrahmane S, Lambert E, Tourette C, Catoire H et al (2005) Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons. Nat Genet 37(4):349–350

    CAS  PubMed  Google Scholar 

  104. Borrell-Pages M, Zala D, Humbert S, Saudou F (2006) Huntington's disease: from huntingtin function and dysfunction to therapeutic strategies. Cell Mol Life Sci 63(22):2642–2660

    CAS  PubMed  Google Scholar 

  105. Cui L, Jeong H, Borovecki F, Parkhurst CN, Tanese N, Krainc D (2006) Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell 127(1):59–69

    CAS  PubMed  Google Scholar 

  106. Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P (2005) Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434(7029):113–118

    CAS  PubMed  Google Scholar 

  107. Jeong H, Cohen DE, Cui L, Supinski A, Savas JN, Mazzulli JR et al (2012) Sirt1 mediates neuroprotection from mutant huntingtin by activation of the TORC1 and CREB transcriptional pathway. Nat Med 18(1):159–165

    CAS  Google Scholar 

  108. Tang BL, Chua CE (2008) SIRT1 and neuronal diseases. Mol Aspects Med 29(3):187–200

    CAS  PubMed  Google Scholar 

  109. Conforti L, Tarlton A, Mack TG, Mi W, Buckmaster EA, Wagner D et al (2000) A Ufd2/D4Cole1e chimeric protein and overexpression of Rbp7 in the slow Wallerian degeneration (WldS) mouse. Proc NatlAcadSci U S A 97(21):11377–11382

    CAS  Google Scholar 

  110. Mack TG, Reiner M, Beirowski B, Mi W, Emanuelli M, Wagner D et al (2001) Wallerian degeneration of injured axons and synapses is delayed by a Ube4b/Nmnat chimeric gene. Nat Neurosci 4(12):1199–1206

    CAS  PubMed  Google Scholar 

  111. Zhang T, Kraus WL (2010) SIRT1-dependent regulation of chromatin and transcription: linking NAD(+) metabolism and signaling to the control of cellular functions. Biochim Biophys Acta 1804(8):1666–1675

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Morris KC, Lin HW, Thompson JW, Perez-Pinzon MA (2011) Pathways for ischemic cytoprotection: role of sirtuins in caloric restriction, resveratrol, and ischemic preconditioning. J Cereb Blood Flow Metab 31(4):1003–1019

    CAS  PubMed  Google Scholar 

  113. Raval AP, Dave KR, Perez-Pinzon MA (2006) Resveratrol mimics ischemic preconditioning in the brain. J Cereb Blood Flow Metab 26(9):1141–1147

    CAS  PubMed  Google Scholar 

  114. Rosen DR (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 364:362

    CAS  PubMed  Google Scholar 

  115. Kiaei M (2008) Peroxisome proliferator-activated receptor-gamma in amyotrophic lateral sclerosis and Huntington's disease. PPAR Res 2008:418765

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Our research group is supported by the Coordenadoria de Aperfeiçoamento do Pessoal de Nível Superior, Conselho Nacional de Desenvolvimento Científico e Tecnológico, and Fundação de Amparo a Pesquisa do Estado de Minas Gerais.

Conflict of Interest

There are no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Henrique Sousa Santos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paraíso, A.F., Mendes, K.L. & Santos, S.H.S. Brain Activation of SIRT1: Role in Neuropathology. Mol Neurobiol 48, 681–689 (2013). https://doi.org/10.1007/s12035-013-8459-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8459-x

Keywords

Navigation