Skip to main content
Log in

DNA-assisted synthesis of nanoceria, its size dependent structural and optical properties for optoelectronic applications

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Cerium oxide (\({\hbox {CeO}}_{2{-}x}\)) nanoparticles or nanoceria were synthesized by the chemical co-precipitation method using cerium nitrate hexahydrate and ammonium carbonate as starting materials and deoxyribonucleic acid (DNA) as a capping agent. The structural and optical characterization of the prepared nanoparticles was studied in depth by X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy, Raman spectroscopy, UV–visible absorption and diffuse reflectance spectroscopy. The average crystallite size and lattice parameters of the cerium oxide nanoparticles at different calcination temperatures were studied using XRD analysis. The average crystallite size was found to be 6 nm and the size increases with calcination temperature. The polycrystalline nature and the size of the particles obtained are in close agreement with HRTEM and Raman analysis. The optical band gaps of all samples were measured by Tauc plot which showed a blue shift with a decrease in size due to the quantum confinement effect. The optical absorption spectrum of the synthesized nanoparticles showed the absorption of UVA, UVB and UVC light, and the variation in structural and optical properties with size makes them suitable for the optoelectronic application. To the best of our knowledge, this is the first report on using DNA in the synthesis of nanostructured ceria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mogensen M, Sammes N M and Tompsett G A 2000 Solid State Ion. 129 63

    CAS  Google Scholar 

  2. Ma Y, Gao W, Zhang Z, Zhang S, Tia Z, Liu Y et al 2018 Surface Sci. Rep. 73 1

    Google Scholar 

  3. Garzon F H, Mukundan R and Brosha E L 2000 Solid State Ion. 633 136

    Google Scholar 

  4. Dimonte R, Fornasiero P, Graziani M and Kašpar J 1998 J. Alloys Compd. 877 275

    Google Scholar 

  5. Elidrissi B, Addou M, Regragui M, Monty C, Bougrine A and Kachouane A 2000 Thin Solid Films 379 23

    CAS  Google Scholar 

  6. Zivkovi L S, Lair V, Lupan O and Ringued A 2011 Russ. J. Phys. Chem. 85 2358

    Google Scholar 

  7. Lin H C 2005 Hydrometall. China 24 9

    Google Scholar 

  8. Devadoss M D, Prabaharan M, Sadaiyandi K, Mahendran M and Sagadevan S 2016 Mater. Res. 19 478

    Google Scholar 

  9. Xiao H, Ai Z and Zhang L 2009 J. Phys. Chem. 113 16625

    CAS  Google Scholar 

  10. Yin L, Wang Y, Pang G, Koltypin Y and Gedanken A 2002 J. Colloid Interface Sci. 246 78

    CAS  Google Scholar 

  11. Anushree S and Kumar C 2015 Mater. Chem. Phys. 155 223

    CAS  Google Scholar 

  12. Purohit R D, Sharma B P, Pillai K T and Tyagi A K 2001 Mater. Res. Bull. 36 2711

    CAS  Google Scholar 

  13. Alla S K, Mandal R K and Prasad N K 2016 RSC Adv. 105 102821

    Google Scholar 

  14. Liu Z, Zu Y, Fu Y, Zhang Y and Liang H 2008 Mater. Lett. 62 2315

    CAS  Google Scholar 

  15. Braun E, Eichen Y, Sivan U and Ben Yoseph G 1998 Nature 391 775

    CAS  Google Scholar 

  16. Yao Y, Song Y and Wang L 2008 Nanotechnology 19 405601

    Google Scholar 

  17. Nithyaja B, Misha H and Nampoori V P N 2012 Nano Sci. Nanotechol. 2 99

    CAS  Google Scholar 

  18. Cao G 2004 Nano structures and nano materials (London: Imperial College Press)

    Google Scholar 

  19. Cullity B D 2001 Elements of X-ray diffraction 3rd edn (New Jersey: Prentice Hall)

    Google Scholar 

  20. Priyanka K P, Babitha K, Sreedevi A, Sheena X, Mohammed E M and Varghese T 2014 J. Electroceram. 32 361

    CAS  Google Scholar 

  21. Suryanarayana C and Grant Norton M 1998 X-ray diffraction – a practical approach (New York: Plenum Press)

    Google Scholar 

  22. Deshpande S, Patil S, Kuchibhatla S V N T and Seal S 2005 Appl. Phys. Lett. 87 133113

    Google Scholar 

  23. Maksimchuk O, Masalov A A and Malyukin Yu V 2013 J. Nano-Electron. Phys. 5 01004-1

  24. Goharshadi E K and Paul S S 2011 J. Colloid Interface Sci. 356 473

    CAS  Google Scholar 

  25. Phokha S, Pinitsoontorn S, Chirawatkul P, Pooarporn Y and Maensiri S 2012 Nanoscale Res. Lett. 7 425

    Google Scholar 

  26. Li Q, Wang L, Hu B, Yang C, Zhou L and Zhang L 2007 Mater. Lett. 61 1615

    CAS  Google Scholar 

  27. Jackson B A, Alekseyev V Y and Barton J K 1999 Biochemistry 38 4655

    CAS  Google Scholar 

  28. Nina K, Mikhail V, Eugenii I, Evgenii T, Roman B, Petr S et al 2016 J. Nanomat. 2016 12

    Google Scholar 

  29. Tan H R, Tan J P Y, Boothroyd C, Hansen T W, Foo Y L and Lin M J 2012 J. Phys. Chem. 116 242

    CAS  Google Scholar 

  30. Han Y, Han L, Yao Y, Li Y and Liu X 2018 Anal. Methods 10 2436

    CAS  Google Scholar 

  31. Deus R C, Foschini C R, Spitova B, Moura F, Longo E and Simoes A Z 2014 Ceram. Int. 40 1

    CAS  Google Scholar 

  32. Soni S, Kumar S, Dalela B, Kumar S, Alvi P A and Dalela S 2018 J. Alloys Compd. 752 520

    CAS  Google Scholar 

  33. Kubelka P and Munk F 1931 Tech. Phys. 12 593

    Google Scholar 

  34. Abdullahi S S, Guner S, Koseeoglu Y, Musa I M, Adamu B I and Abdulhamid M I 2016 J. NAMP 35 241

    Google Scholar 

  35. Blitz J P 1998 Modern techniques in applied molecular spectroscopy (John Wiley & Sons, Inc.)

    Google Scholar 

  36. Phoka S, Laokul P, Swatsitang E, Promarak V, Seraphin S and Maensiri S 2009 Mater. Sci. Eng. 115 423

    CAS  Google Scholar 

  37. Arul N S, Mangalaraj D, Chen P C, Ponpandian N and Viswanathan C 2011 Mater. Lett. 65 2635

    CAS  Google Scholar 

  38. Zhang J Z 2009 Optical properties and spectroscopy of nano-materials (World Scientific Publishing Co. Pvt. Ltd.)

    Google Scholar 

  39. Mazali I O, Viana B C, Alves O L, Filho J M and Souza Filho A G 2007 J. Phys. Chem. Solids 68 622

    CAS  Google Scholar 

  40. Radovic M, Dohcevic-Mitrovic Z, Scepanovic M, Grujic-Brojcin M, Matovic B, Boskovic S et al 2007 Sci. Sin. 39 281

    CAS  Google Scholar 

  41. Hattori T, Kobayashi K and Ozawa M 2017 Jpn. J. Appl. Phys. 56 06

    Google Scholar 

  42. Jiang Q, Shi H X and Zhao M 1999 J. Chem. Phys. 111 2176

    CAS  Google Scholar 

  43. Kumar S, Srivastava M, Singh J, Layek S, Yashpal M, Materny A et al 2015 AIP Adv. 5 027109

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge SAIF, Cochin and CLIF University of Kerala for providing facilities for characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P S Prabha Jyothi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jyothi, P.S.P., Anitha, B., Smitha, S. et al. DNA-assisted synthesis of nanoceria, its size dependent structural and optical properties for optoelectronic applications. Bull Mater Sci 43, 119 (2020). https://doi.org/10.1007/s12034-020-02102-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02102-w

Keywords

Navigation