Skip to main content
Log in

Increasing Long-Chain Dicarboxylic Acid Production in Candida tropicalis by Engineering Fatty Transporters

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Candida tropicalis can metabolize alkanes or fatty acids to produce long-chain dicarboxylic acids (DCAs). Fatty acid transporters located on the cell or peroxisome membrane may play an important role in this process. Using amino acid sequence homologous alignment, two putative proteins, CtFat1p and CtPxa1p, located on the cell and peroxisome membrane were found, respectively. Moreover, single- and double-knockout homologous recombination technology was used to study ctfat1p and ctpxa1p gene effects on DCA synthesis. In comparison to the wild-type strain, long-chain DCA yield decreased by 65.14%, 88.38% and 56.19% after single and double-copy knockout of ctfat1p genes and double-copy knockout of ctpxa1p genes, respectively, indicating that the knockout of ctfat1p and ctpxa1p genes had a significant effect on the conversion of oils and fats into long-chain DCAs by C. tropicalis. However, the yield of long-chain DCAs increased by 21.90% after single-knockout of the ctpxa1p gene, indicating that the single-knockout of the ctpxa1p gene may reduce fatty acid transport to peroxisome for further oxidation. Moreover, to improve the intracellular transport rate of fatty acids, ctfat1p copy number increased, increasing DCA yield by 30.10%. These results may provide useful information for enhancing the production of long-chain DCAs by C. tropicalis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cho, Y. H., Lee, H. J., Lee, J. E., Kim, S. J., & Park, Y. C. (2015). Fast determination of multiple-reaction intermediates for long-chain dicarboxylic acid biotransformation by gas chromatography-flame ionization detector. Journal of Industrial Microbiology and Biotechnology, 25(5), 704–708. https://doi.org/10.4014/jmb.1502.02026.

    Article  CAS  Google Scholar 

  2. Xiu, C. Y., & Zhu, G. J. (2002). Research progress in the production of long chain diacid by fermentation. Chinese Journal of Bioengineering, 22(2), 66–69. https://doi.org/10.3969/j.issn.1671-8135.2002.02.013.

    Article  Google Scholar 

  3. Das, G., Trivedi, R. K., & Vasishtha, A. K. (1989). Heptaldehyde and undecylenic acid from castor oil. Journal of the American Oil Chemists Society. https://doi.org/10.1007/BF02682613.

    Article  Google Scholar 

  4. Sathesh-Prabu, C., & Lee, S. K. (2015). Production of long-chain α, ω-dicarboxylic acids by engineered Escherichia coli from renewable fatty acids and plant oils. Journal of Agricultural and Food Chemistry, 63, 8199–8208. https://doi.org/10.1021/acs.jafc.5b03833.

    Article  CAS  PubMed  Google Scholar 

  5. Lee, H., Sugiharto, Y. E. C., Lee, S., Park, G., Han, C., Jang, H., et al. (2017). Characterization of the newly isolated ω-oxidizing yeast Candida sorbophila DS02 and its potential applications in long-chain dicarboxylic acid production. Applied Microbiology and Biotechnology, 101, 6333–6342. https://doi.org/10.1007/s00253-017-8321-6.

    Article  CAS  PubMed  Google Scholar 

  6. Liu, S. C., Li, C., Fang, X. C., & Cao, Z. A. (2004). Optimal pH control strategy for high-level production of long-chain α, ω-dicarboxylic acid by Candida tropicalis. Enzyme and Microbial Technology, 34, 73–77. https://doi.org/10.1016/j.enzmictec.2003.09.001.

    Article  CAS  Google Scholar 

  7. Funk, I., Rimmel, N., Schorsch, C., Sieber, V., & Schmid, J. (2017). Production of dodecanedioic acid via biotransformation of low cost plant-oil derivatives using Candida tropicalis. Journal of Industrial Microbiology and Biotechnology, 44, 1491–1502. https://doi.org/10.1007/s10295-017-1972-6.

    Article  CAS  PubMed  Google Scholar 

  8. Wang, J. Q., Peng, J., Fan, H., Xiu, X., Xue, L., Su, J., Yang, X. H., & Wang, R. M. (2018). Development of mazF-based markerless genome editing system and metabolic pathway engineering in Candida tropicalis 1798 for producing long-chain dicarboxylic acids. Journal of Agricultural and Food Chemistry, 45, 971–981. https://doi.org/10.1007/s10295-018-2074-9.

    Article  CAS  Google Scholar 

  9. Wang, B., Hu, Q., Zhang, Y., Shi, R., Chai, X., Liu, Z., Shang, X. L., Zhang, Y., & Wen, T. Y. (2018). A RecET-assisted CRISPR–Cas9 genome editing in Corynebacterium glutamicum. Microbial Cell Factories, 17, 63. https://doi.org/10.1186/s12934-018-0910-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Coe, N. R., Smith, A. J., Frohnert, B. I., Watkins, P. A., & Bernlohr, D. A. (1999). The fatty acid transport protein (FATP1) is a very long chain acyl-CoA synthetase. Journal of Biological Chemistry, 274(51), 36300–363004. https://doi.org/10.1074/jbc.274.51.36300.

    Article  CAS  Google Scholar 

  11. Zou, Z. Y., Tong, F. M., Faergeman, N. J., Borsting, C., Black, P. N., & DiRusso, C. C. (2003). Vectorial acylation in Saccharomyces cerevisiae. Fat1p and fatty acyl-CoA synthetase are interacting components of a fatty acid import complex. The Journal of Biological Chemistry, 278(18), 16414–16422. https://doi.org/10.1074/jbc.M210557200.

    Article  CAS  PubMed  Google Scholar 

  12. Kalervo, H. J., Mursula, A. M., Hanspeter, R., Wierenga, R. K., Kastaniotis, A. J., & Aner, G. (2003). The biochemistry of peroxisomal β-oxidation in the yeast Saccharomyces Cerevisiae. FEMS Microbiology Reviews, 27(1), 35–64. https://doi.org/10.1016/S0168-6445(03)00017-2.

    Article  CAS  Google Scholar 

  13. Zou, Z., Dirusso, C. C., Ctrnacta, V., & Black, P. N. (2002). Fatty acid transport in Saccharomyces cerevisiae. Journal of Biological Chemistry, 277(34), 31062–31071. https://doi.org/10.1074/jbc.m205034200.

    Article  CAS  Google Scholar 

  14. Goffeau, A., & Decottignies, A. (1997). Complete inventory of the yeast abc proteins. Nature Genetics, 15(2), 137–145. https://doi.org/10.1038/ng0297-137.

    Article  PubMed  Google Scholar 

  15. Gao, Z., Gao, H., Liu, M., & Jiao, P. (2010). Engineering the acetyl-coa transportation system of Candida tropicalis enhances the production of dicarboxylic acid. Biotechnology Journal, 1(1), 68–74. https://doi.org/10.1002/biot.200500008.

    Article  Google Scholar 

  16. Li, J., Wang, Y., Yang, Y. D., Lei, X. T., & Xiao, Y. (2016). Comparison of fatty acid component between palm oil and common edible oils. Journal of Southern Agriculture, 47, 2124–2128.

    CAS  Google Scholar 

  17. Wu, S. X., & Letchworth, G. J. (2004). High efficiency transformation by electroporation of Pichia pastoris pretreated with lithium acetate and dithiothreitol. BioTechniques, 36, 152–154. https://doi.org/10.2144/04361DD02.

    Article  CAS  PubMed  Google Scholar 

  18. Liu, H., Jiao, X., Wang, Y., Yang, X., Sun, W., Wang, J., Zhang, S., & Zhao, Z. K. (2017). Fast and efficient genetic transformation of oleaginous yeast Rhodosporidium toruloides by using electroporation. Fems Yeast Research, 2, 2. https://doi.org/10.1093/femsyr/fox017.

    Article  CAS  Google Scholar 

  19. St-Pierre, F., Cui, L., Priest, D. G., Endy, D., & Shearwin, K. E. (2013). One-step cloning and chromosomal integration of DNA. ACS Synthetic Biology, 2(9), 537–541. https://doi.org/10.1021/sb400021j.

    Article  CAS  PubMed  Google Scholar 

  20. Vanhanen, S., West, M., Kroon, J. T. M., Lindner, N., Casey, J., & Cheng, Q. (2000). A consensus sequence for long-chain fatty-acid alcohol oxidases from candida identifies a family of genes involved in lipid omega-oxidation in yeast with homologues in plants and Saccharomycopsis. Journal of Biological Chemistry, 275(6), 4445–4452. https://doi.org/10.1074/jbc.275.6.4445.

    Article  CAS  Google Scholar 

  21. Mishra, P., Park, G. Y., Lakshmanan, M., Lee, H. S., Lee, H., & Chang, M. W. (2016). Genome-scale metabolic modeling and in silico analysis of lipid accumulating yeast Candida tropicalis for dicarboxylic acid production. Biotechnology and Bioengineering, 113, 1993–2004. https://doi.org/10.1002/bit.25955.

    Article  CAS  PubMed  Google Scholar 

  22. Phol, J. (2004). Fat/cd36-mediated long-chain fatty acid uptake in adipocytes requires plasma membrane rafts. Molecular Biology of the Cell, 16(1), 24–31. https://doi.org/10.1091/mbc.E04-07-0616.

    Article  CAS  Google Scholar 

  23. Nickerson, J. G., Alkhateeb, H., Benton, C. R., Lally, J., Nickerson, J., Han, X. X., Wilson, M. H., Jain, S. S., Snook, L. A., Glatz, J. F. C., Chabowski, A., Luiken, J. J. F. P., & Bonen, A. (2009). Greater transport efficiencies of the membrane fatty acid transporters FAT/CD36 and FATP4 compared with FABPpm and FATP1 and differential effects on fatty acid esterification and oxidation in rat skeletal muscle. Journal of Biological Chemistry, 284, 16522–16531. https://doi.org/10.1074/jbc.M109.004788.

    Article  CAS  Google Scholar 

  24. Wu, Q. W., Ortegon, A. M., & TsangDoege, B. (2006). FATP1 is an insulin-sensitive fatty acid transporter involved in diet-induced obesity. Molecular and Cellular Biology, 26, 3455–3467. https://doi.org/10.1128/MCB.26.9.3455-3467.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rémi, D., Heber, G.-M., Thierry, D., France, T., & Jean-Marc, N. (2015). The fatty acid transport protein fat1p is involved in the export of fatty acids from lipid bodies in Yarrowia lipolytica. FEMS Yeast Research, 14, 883–896. https://doi.org/10.1111/1567-1364.12177.

    Article  CAS  Google Scholar 

  26. Kerner, J., & Hoppel, C. (2000). Fatty acid import into mitochondria. Biochimica et Biophysica Acta-Biomembranes, 1486(1), 1–17. https://doi.org/10.1016/s1388-1981(00)00044-5.

    Article  CAS  Google Scholar 

  27. Wang, J. H., Li, X. C, & Jiang, L. H. (2009). Classification and function of ABC transporters in yeast cells. Chinese Journal of Cell Biology, 491–496.

  28. Zou, Z., Dirusso, C. C., Ctrnacta, V., & Black, P. N. (2002). Fatty acid transport in Saccharomyces cerevisiae directed mutagenesis of fat1 distinguishes the biochemical activities associated with fat1p. Journal of Biological Chemistry, 277(34), 31062. https://doi.org/10.1074/jbc.M205034200.

    Article  CAS  Google Scholar 

  29. Faergeman, N. J., Dirusso, C. C., Elberger, A., Knudsen, J., & Black, P. N. (1997). Disruption of the Saccharomyces cerevisiae homologue to the murine fatty acid transport protein impairs uptake and growth on long-chain fatty acids. Journal of Biological Chemistry, 272(13), 8531–8538. https://doi.org/10.1074/jbc.272.13.8531.

    Article  CAS  Google Scholar 

  30. Cheng, C., Wang, J. Q., Wang, T. F., Yang, X. H., & Wang, R. M. (2017). Effect of ctpxa1 gene deletion in Candida tropicalis on long chain dicarboxylic acid accumulation. Chinese Journal of Biotechnology, 33, 237–246. Doi: https://doi.org/10.13345/j.cjb.160278

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31801527), Focus on Research and Development Plan in Shandong Province (2019JZZY011003, 2018YFJH0401), National Key Research and Development Project (2019YFC1905900), Taishan industry leading talent (tscy20180103), Major Program of National Natural Science Foundation of Shandong (ZR2017ZB0208) and Synthetic Biology Technology Innovation Center of Shandong Province (sdsynbio-2018-PY-02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junqing Wang or Nan Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research Involving Human and Animal Rights

This article does not contain any studies with animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 288 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Xiu, X., Wang, Z. et al. Increasing Long-Chain Dicarboxylic Acid Production in Candida tropicalis by Engineering Fatty Transporters. Mol Biotechnol 63, 544–555 (2021). https://doi.org/10.1007/s12033-021-00319-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-021-00319-6

Keywords

Navigation