Skip to main content

Advertisement

Log in

5-HT7 Receptors Are Not Involved in Neuropeptide Release in Primary Cultured Rat Trigeminal Ganglion Neurons

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Migraine is a common but complex neurological disorder. Its precise mechanisms are not fully understood. Increasing indirect evidence indicates that 5-HT7 receptors may be involved; however, their role remains unknown. Our previous in vivo study showed that selective blockade of 5-HT7 receptors caused decreased serum levels of calcitonin gene-related peptide (CGRP) in the external jugular vein following electrical stimulation of the trigeminal ganglion (TG) in an animal model of migraine. In the present study, we used an in vitro model of cultured TG cells to further investigate whether 5-HT7 receptors are directly responsible for the release of CGRP and substance P from TG neurons. We stimulated rat primary cultured TG neurons with capsaicin or potassium chloride (KCl) to mimic neurogenic inflammation, resulting in release of CGRP and substance P. 5-HT7 receptors were abundantly expressed in TG neurons. Greater than 93 % of 5-HT7 receptor-positive neurons co-expressed CGRP and 56 % co-expressed substance P. Both the capsaicin- and KCl-induced release of CGRP and substance P were unaffected by pretreatment of cultured TG cells with the selective 5-HT7 receptor agonist AS19 and antagonist SB269970. This study demonstrates for the first time that 5-HT7 receptors are abundantly co-expressed with CGRP and substance P in rat primary TG neurons and suggests that they are not responsible for the release of CGRP and substance P from cultured TG neurons evoked by capsaicin or KCl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

AS19:

(2S)-(+)-5-(1,3,5-trimethylpyrazol-4-yl)-2-(dimethylamino) tetralin

BSA:

Bovine serum albumin

CGRP:

Calcitonin gene-related peptide

DMSO:

Dimethyl sulfoxide

ELISA:

Commercial enzyme-linked immunosorbent assay

HBS:

HEPES-buffered saline

HEPES:

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

KCl:

Potassium chloride

LSD:

Fisher’s least significance difference

MAP2:

Microtubule associated protein 2

PBS:

Phosphate-buffered saline

SB269970:

(2R)-1-[(3-hydroxyphenyl) sulfonyl]-2-[2-(4-methyl-1-piperidinyl) ethyl] pyrrolidine hydrochloride

SGC:

Satellite glial cells

SP:

Substance P

TG:

Trigeminal ganglion

References

  • Abbey MJ, Patil VV, Vause CV, Durham PL (2008) Repression of calcitonin gene-related peptide expression in trigeminal neurons by a Theobroma cacao extract. J Ethnopharmacol 115:238–248

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahluwalia J, Urban L, Bevan S, Nagy I (2003) Anandamide regulates neuropeptide release from capsaicin-sensitive primary sensory neurons by activating both the cannabinoid 1 receptor and the vanilloid receptor 1 in vitro. Eur J Neurosci 17:2611–2618

    Article  PubMed  Google Scholar 

  • Amrutkar DV, Ploug KB, Hay-Schmidt A, Porreca F, Olesen J, Jansen-Olesen I (2012) mRNA expression of 5-hydroxytryptamine 1B, 1D, and 1F receptors and their role in controlling the release of calcitonin gene-related peptide in the rat trigeminovascular system. Pain 153:830–838

    Article  CAS  PubMed  Google Scholar 

  • Arulmani U, Maassenvandenbrink A, Villalon CM, Saxena PR (2004) Calcitonin gene-related peptide and its role in migraine pathophysiology. Eur J Pharmacol 500:315–330

    Article  CAS  PubMed  Google Scholar 

  • Bao L, Jin SX, Zhang C, Wang LH, Xu ZZ, Zhang FX et al (2003) Activation of delta opioid receptors induces receptor insertion and neuropeptide secretion. Neuron 37:121–133

    Article  CAS  PubMed  Google Scholar 

  • Bellamy J, Bowen EJ, Russo AF, Durham PL (2006) Nitric oxide regulation of calcitonin gene-related peptide gene expression in rat trigeminal ganglia neurons. Eur J Neurosci 23:2057–2066

    Article  PubMed  PubMed Central  Google Scholar 

  • Ceruti S, Villa G, Fumagalli M, Colombo L, Magni G, Zanardelli M et al (2011) Calcitonin gene-related peptide-mediated enhancement of purinergic neuron/glia communication by the algogenic factor bradykinin in mouse trigeminal ganglia from wild-type and R192Q Cav2.1 knock-in mice: implications for basic mechanisms of migraine pain. J Neurosci 31:3638–3649

    Article  CAS  PubMed  Google Scholar 

  • Dam LJ, Hai L, Ha YM (2014) Role of the 5-HT(7) receptor in the effects of intrathecal nefopam in neuropathic pain in rats. Neurosci Lett 566:50–54

    Article  CAS  PubMed  Google Scholar 

  • Damodaram S, Thalakoti S, Freeman SE, Garrett FG, Durham PL (2009) Tonabersat inhibits trigeminal ganglion neuronal-satellite glial cell signaling. Headache 49:5–20

    Article  PubMed  PubMed Central  Google Scholar 

  • De Felipe C, Herrero JF, O’Brien JA, Palmer JA, Doyle CA, Smith AJ et al (1998) Altered nociception, analgesia and aggression in mice lacking the receptor for substance P. Nature 392:394–397

    Article  PubMed  Google Scholar 

  • Durham PL, Masterson CG (2013) Two mechanisms involved in trigeminal CGRP release: implications for migraine treatment. Headache 53:67–80

    Article  PubMed  PubMed Central  Google Scholar 

  • Durham PL, Russo AF (1999) Regulation of calcitonin gene-related peptide secretion by a serotonergic antimigraine drug. J Neurosci 19:3423–3429

    CAS  PubMed  Google Scholar 

  • Durham PL, Russo AF (2003) Stimulation of the calcitonin gene-related peptide enhancer by mitogen-activated protein kinases and repression by an antimigraine drug in trigeminal ganglia neurons. J Neurosci 23:807–815

    CAS  PubMed  Google Scholar 

  • Durham PL, Dong PX, Belasco KT, Kasperski J, Gierasch WW, Edvinsson L et al (2004) Neuronal expression and regulation of CGRP promoter activity following viral gene transfer into cultured trigeminal ganglia neurons. Brain Res 997:103–110

    Article  CAS  PubMed  Google Scholar 

  • Eftekhari S, Salvatore CA, Calamari A, Kane SA, Tajti J, Edvinsson L (2010) Differential distribution of calcitonin gene-related peptide and its receptor components in the human trigeminal ganglion. Neuroscience 169:683–696

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Parra P, Maroto M, Cavaliere F, Naldaiz-Gastesi N, Alava JI, Garcia AG et al (2013) A neural extracellular matrix-based method for in vitro hippocampal neuron culture and dopaminergic differentiation of neural stem cells. BMC Neurosci 14:48

    Article  PubMed  PubMed Central  Google Scholar 

  • Goadsby PJ, Edvinsson L, Ekman R (1990) Vasoactive peptide release in the extracerebral circulation of humans during migraine headache. Ann Neurol 28:183–187

    Article  CAS  PubMed  Google Scholar 

  • Hanani M (2005) Satellite glial cells in sensory ganglia: from form to function. Brain Res Brain Res Rev 48:457–476

    Article  CAS  PubMed  Google Scholar 

  • Ho SS, Chow BK, Yung WH (2007) Serotonin increases the excitability of the hypothalamic paraventricular nucleus magnocellular neurons. Eur J Neurosci 25:2991–3000

    Article  PubMed  Google Scholar 

  • Iliff JJ, Fairbanks SL, Balkowiec A, Alkayed NJ (2010) Epoxyeicosatrienoic acids are endogenous regulators of vasoactive neuropeptide release from trigeminal ganglion neurons. J Neurochem 115:1530–1542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenkins DW, Feniuk W, Humphrey PP (2001) Characterization of the prostanoid receptor types involved in mediating calcitonin gene-related peptide release from cultured rat trigeminal neurones. Br J Pharmacol 134:1296–1302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirschstein T, Greffrath W, Busselberg D, Treede RD (1999) Inhibition of rapid heat responses in nociceptive primary sensory neurons of rats by vanilloid receptor antagonists. J Neurophysiol 82:2853–2860

    CAS  PubMed  Google Scholar 

  • Kuris A, Xu CB, Zhou MF, Tajti J, Uddman R, Edvinsson L (2007) Enhanced expression of CGRP in rat trigeminal ganglion neurons during cell and organ culture. Brain Res 1173:6–13

    Article  CAS  PubMed  Google Scholar 

  • Lee WS, Limmroth V, Ayata C, Cutrer FM, Waeber C, Yu X et al (1995) Peripheral GABAA receptor-mediated effects of sodium valproate on dural plasma protein extravasation to substance P and trigeminal stimulation. Br J Pharmacol 116:1661–1667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lennerz JK, Ruhle V, Ceppa EP, Neuhuber WL, Bunnett NW, Grady EF et al (2008) Calcitonin receptor-like receptor (CLR), receptor activity-modifying protein 1 (RAMP1), and calcitonin gene-related peptide (CGRP) immunoreactivity in the rat trigeminovascular system: differences between peripheral and central CGRP receptor distribution. J Comp Neurol 507:1277–1299

    Article  CAS  PubMed  Google Scholar 

  • Li J, Vause CV, Durham PL (2008) Calcitonin gene-related peptide stimulation of nitric oxide synthesis and release from trigeminal ganglion glial cells. Brain Res 1196:22–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Oortgiesen M, Li L, Simon SA (2001) Capsaicin inhibits activation of voltage-gated sodium currents in capsaicin-sensitive trigeminal ganglion neurons. J Neurophysiol 85:745–758

    CAS  PubMed  Google Scholar 

  • Ma QP, Hill R, Sirinathsinghji D (2001) Colocalization of CGRP with 5-HT1B/1D receptors and substance P in trigeminal ganglion neurons in rats. Eur J Neurosci 13:2099–2104

    Article  CAS  PubMed  Google Scholar 

  • Mahe C, Loetscher E, Dev KK, Bobirnac I, Otten U, Schoeffter P (2005) Serotonin 5-HT7 receptors coupled to induction of interleukin-6 in human microglial MC-3 cells. Neuropharmacology 49:40–47

    Article  CAS  PubMed  Google Scholar 

  • Martin-Cora FJ, Pazos A (2004) Autoradiographic distribution of 5-HT7 receptors in the human brain using [3H] mesulergine: comparison to other mammalian species. Br J Pharmacol 141:92–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng J, Wang J, Lawrence G, Dolly JO (2007) Synaptobrevin I mediates exocytosis of CGRP from sensory neurons and inhibition by botulinum toxins reflects their anti-nociceptive potential. J Cell Sci 120:2864–2874

    Article  CAS  PubMed  Google Scholar 

  • Meng J, Ovsepian SV, Wang J, Pickering M, Sasse A, Aoki KR et al (2009) Activation of TRPV1 mediates calcitonin gene-related peptide release, which excites trigeminal sensory neurons and is attenuated by a retargeted botulinum toxin with anti-nociceptive potential. J Neurosci 29:4981–4992

    Article  CAS  PubMed  Google Scholar 

  • Messlinger K, Fischer MJ, Lennerz JK (2011) Neuropeptide effects in the trigeminal system: pathophysiology and clinical relevance in migraine. Keio J Med 60:82–89

    Article  CAS  PubMed  Google Scholar 

  • Neeb L, Hellen P, Boehnke C, Hoffmann J, Schuh-Hofer S, Dirnagl U et al (2011) IL-1beta stimulates COX-2 dependent PGE(2) synthesis and CGRP release in rat trigeminal ganglia cells. PLoS One 6:e17360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pericic D, Svob Strac D (2007) The role of 5-HT(7) receptors in the control of seizures. Brain Res 1141:48–55

    Article  CAS  PubMed  Google Scholar 

  • Pietrobon D, Striessnig J (2003) Neurobiology of migraine. Nat Rev Neurosci 4:386–398

    Article  CAS  PubMed  Google Scholar 

  • Price TJ, Louria MD, Candelario-Soto D, Dussor GO, Jeske NA, Patwardhan AM et al (2005) Treatment of trigeminal ganglion neurons in vitro with NGF, GDNF or BDNF: effects on neuronal survival, neurochemical properties and TRPV1-mediated neuropeptide secretion. BMC Neurosci 6:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Qin N, Neeper MP, Liu Y, Hutchinson TL, Lubin ML, Flores CM (2008) TRPV2 is activated by cannabidiol and mediates CGRP release in cultured rat dorsal root ganglion neurons. J Neurosci 28:6231–6238

    Article  CAS  PubMed  Google Scholar 

  • Reuter U, Israel H, Neeb L (2015) The pharmacological profile and clinical prospects of the oral 5-HT1F receptor agonist lasmiditan in the acute treatment of migraine. Ther Adv Neurol Disord 8:46–54

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarkisyan G, Roberts AJ, Hedlund PB (2010) The 5-HT(7) receptor as a mediator and modulator of antidepressant-like behavior. Behav Brain Res 209:99–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seegers HC, Hood VC, Kidd BL, Cruwys SC, Walsh DA (2003) Enhancement of angiogenesis by endogenous substance P release and neurokinin-1 receptors during neurogenic inflammation. J Pharmacol Exp Ther 306:8–12

    Article  CAS  PubMed  Google Scholar 

  • Simonetti M, Giniatullin R, Fabbretti E (2008) Mechanisms mediating the enhanced gene transcription of P2X3 receptor by calcitonin gene-related peptide in trigeminal sensory neurons. J Biol Chem 283:18743–18752

    Article  CAS  PubMed  Google Scholar 

  • Steinhoff M, Vergnolle N, Young SH, Tognetto M, Amadesi S, Ennes HS et al (2000) Agonists of proteinase-activated receptor 2 induce inflammation by a neurogenic mechanism. Nat Med 6:151–158

    Article  CAS  PubMed  Google Scholar 

  • Tajti J, Uddman R, Moller S, Sundler F, Edvinsson L (1999) Messenger molecules and receptor mRNA in the human trigeminal ganglion. J Auton Nerv Syst 76:176–183

    Article  CAS  PubMed  Google Scholar 

  • Tepper SJ, Rapoport AM, Sheftell FD (2002) Mechanisms of action of the 5-HT1B/1D receptor agonists. Arch Neurol 59:1084–1088

    Article  PubMed  Google Scholar 

  • Terron JA, Martinez-Garcia E (2007) 5-HT7 receptor-mediated dilatation in the middle meningeal artery of anesthetized rats. Eur J Pharmacol 560:56–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terron JA, Bouchelet I, Hamel E (2001) 5-HT7 receptor mRNA expression in human trigeminal ganglia. Neurosci Lett 302:9–12

    Article  CAS  PubMed  Google Scholar 

  • Thalakoti S, Patil VV, Damodaram S, Vause CV, Langford LE, Freeman SE et al (2007) Neuron-glia signaling in trigeminal ganglion: implications for migraine pathology. Headache 47:1008–1023, Discussion 1024–1005

    Article  PubMed  PubMed Central  Google Scholar 

  • Ushio N, Dai Y, Wang S, Fukuoka T, Noguchi K (2013) Transient receptor potential channel A1 involved in calcitonin gene-related peptide release in neurons. Neural Regen Res 8:3013–3019

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vasefi MS, Yang K, Li J, Kruk JS, Heikkila JJ, Jackson MF et al (2013) Acute 5-HT7 receptor activation increases NMDA-evoked currents and differentially alters NMDA receptor subunit phosphorylation and trafficking in hippocampal neurons. Mol Brain 6:24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viguier F, Michot B, Hamon M, Bourgoin S (2013) Multiple roles of serotonin in pain control mechanisms—implications of 5-HT(7) and other 5-HT receptor types. Eur J Pharmacol 716:8–16

    Article  CAS  PubMed  Google Scholar 

  • von Bohlen Und Halbach O (2007) Immunohistological markers for staging neurogenesis in adult hippocampus. Cell Tissue Res 329:409–420

    Article  Google Scholar 

  • Wang H, Gong B, Vadakkan KI, Toyoda H, Kaang BK, Zhuo M (2007) Genetic evidence for adenylyl cyclase 1 as a target for preventing neuronal excitotoxicity mediated by N-methyl-D-aspartate receptors. J Biol Chem 282:1507–1517

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Fang Y, Liang J, Yin Z, Miao J, Luo N (2010) Selective inhibition of 5-HT7 receptor reduces CGRP release in an experimental model for migraine. Headache 50:579–587

    Article  PubMed  Google Scholar 

  • Wang X, Fang Y, Liang J, Yan M, Hu R, Pan X (2014) 5-HT7 receptors are involved in neurogenic dural vasodilatation in an experimental model of migraine. J Mol Neurosci 54:164–170

    Article  CAS  PubMed  Google Scholar 

  • Wesolowska A, Nikiforuk A, Stachowicz K, Tatarczynska E (2006) Effect of the selective 5-HT7 receptor antagonist SB 269970 in animal models of anxiety and depression. Neuropharmacology 51:578–586

    Article  CAS  PubMed  Google Scholar 

  • Xiao Y, Richter JA, Hurley JH (2008) Release of glutamate and CGRP from trigeminal ganglion neurons: role of calcium channels and 5-HT1 receptor signaling. Mol Pain 4:12

    Article  PubMed  PubMed Central  Google Scholar 

  • Yanarates O, Dogrul A, Yildirim V, Sahin A, Sizlan A, Seyrek M et al (2010) Spinal 5-HT7 receptors play an important role in the antinociceptive and antihyperalgesic effects of tramadol and its metabolite, O-desmethyltramadol, via activation of descending serotonergic pathways. Anesthesiology 112:696–710

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Liu X, Yin Y, Sun S, Deng X (2012) Involvement of 5-HT(7) receptors in the pathogenesis of temporal lobe epilepsy. Eur J Pharmacol 685:52–58

    Article  CAS  PubMed  Google Scholar 

  • Zagami AS, Goadsby PJ, Edvinsson L (1990) Stimulation of the superior sagittal sinus in the cat causes release of vasoactive peptides. Neuropeptides 16:69–75

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (grant number 81100830); the Science and Technology Program of Guangzhou, China (grant numbers 2012 J5100039 and 2012 J4300086); and the Medical Science and Technology Project of Guangzhou (grant number 20121A011025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoping Pan.

Ethics declarations

Conflict of Interest

There is no conflict of interest to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Hu, R., Liang, J. et al. 5-HT7 Receptors Are Not Involved in Neuropeptide Release in Primary Cultured Rat Trigeminal Ganglion Neurons. J Mol Neurosci 59, 251–259 (2016). https://doi.org/10.1007/s12031-016-0727-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-016-0727-6

Keywords

Navigation