Skip to main content
Log in

Toll-Like Receptor 2 Deficiency Shifts PrP106-126-Induced Microglial Activation from a Neurotoxic to a Neuroprotective Phenotype

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Prion diseases are fatal neurodegenerative diseases characterized by spongiform change, neuronal loss, and gliosis involving microglial activation in the central nervous system. Microglial activation is thought to play a key role in the pathogenesis of prion disease; however, the molecular mechanisms underlying prion-induced microglial activation are not well understood. The present study underlines the importance of toll-like receptor (TLR)-2 in mediating PrP106-126-induced microglial activation. We found that PrP106-126 induced expression of proinflammatory molecules and TLR2 in microglial cells; however, functional blocking antibodies against TLR2 suppressed PrP106-126-induced expression of proinflammatory molecules. PrP106-126-induced expression of proinflammatory molecules was also reduced in microglial cells isolated from TLR2−/− mice compared to those isolated from wild-type mice. Consistent with the importance of nuclear factor kappa B (NF-κB) mediating TLR functions, NF-κB inhibition also inhibited PrP106-126-induced expression of proinflammatory molecules. To better understand the effect of TLR2 deficiency on active microglial cells, we studied the expression of Arg1 and Mrc1 and anti-inflammatory cytokines, which indicated that TLR2 deficiency in microglial cells results in a shift from neurotoxic to neuroprotective phenotype. Taken together, our results indicate that the TLR2 signaling pathway mediates PrP106-126-induced microglial activation and potentially reveal new therapeutic strategies for prion diseases that modulate TLR2 signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

GSS:

Gerstmann-Sträussler syndrome

CJD:

Creutzfeldt-Jakob disease

CNS:

Central nervous system

PD:

Parkinson’s disease

MS:

Multiple sclerosis

AD:

Alzheimer’s disease

TLR:

Toll-like receptor

KO:

Knockout

WT:

Wild type

Aβ:

Amyloid β

SCC:

Strongly connected component

MAPK:

Mitogen-activated protein kinase

ERK:

Extracellular signal-regulated kinase

mFPR2:

Formyl peptide receptor 2

miR:

mRNA

RAGE:

Receptor for advanced glycation end products

NF-κB:

Nuclear factor kappa B

CCK-8:

Cell counting Kit-8

DMEM:

Dulbecco’s modified Eagle’s medium

cDNA:

Complementary DNA

qPCR:

Quantitative polymerase chain reaction

ROS:

Reactive oxygen species

TNF:

Tumor necrosis factor

IL:

Interleukin

iNOS:

Inducible isoform of nitric oxide synthase

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

TBS:

Tris-buffered saline

ECF:

Chemifluorescence

ThT:

Thioflavine-T

PDTC:

Pyrrolidine dithiocarbamate

Arg:

Arginase

Mrc:

Macrophage mannose receptor

MyD88:

Myeloid differentiation factor 88

TGF:

Transforming growth factor

PAMPs:

Pathogen-associated molecular pattern molecules

DAMPs:

Damage-associated molecular pattern molecules

NTF:

Neurotrophic factors

TIRAP:

TIR domain-containing adaptor protein

References

  • Aguzzi A, Polymenidou M (2004) Mammalian prion biology: one century of evolving concepts. Cell 116:313–327

    Article  CAS  PubMed  Google Scholar 

  • Brown DR, Schmidt B, Kretzschmar HA (1996) Role of microglia and host prion protein in neurotoxicity of a prion protein fragment. Nature 380:345–347

    Article  CAS  PubMed  Google Scholar 

  • Chang J, Yang L, Kouadir M et al (2012) Antibody-mediated inhibition of integrin alpha5beta1 blocks neurotoxic prion peptide PrP106-126-induced activation of BV2 microglia. J Mol Neurosci 48:248–252

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Iribarren P, Hu J et al (2006) Activation of Toll-like receptor 2 on microglia promotes cell uptake of Alzheimer disease-associated amyloid beta peptide. J Biol Chem 281:3651–3659

    Article  CAS  PubMed  Google Scholar 

  • Colton C, Wilcock DM (2010) Assessing activation states in microglia. CNS Neurol Disord Drug Targets 9:174–191

    Article  CAS  PubMed  Google Scholar 

  • Crespo I, Roomp K, Jurkowski W et al (2012) Gene regulatory network analysis supports inflammation as a key neurodegeneration process in prion disease. BMC Syst Biol 6:132

    Article  PubMed Central  PubMed  Google Scholar 

  • Ettaiche M, Pichot R, Vincent JP et al (2000) In vivo cytotoxicity of the prion protein fragment 106–126. J Biol Chem 275:36487–36490

    Article  CAS  PubMed  Google Scholar 

  • Forloni G, Angeretti N, Chiesa R et al (1993) Neurotoxicity of a prion protein fragment. Nature 362:543–546

    Article  CAS  PubMed  Google Scholar 

  • Garcao P, Oliveira CR, Agostinho P (2006) Comparative study of microglia activation induced by amyloid-beta and prion peptides: role in neurodegeneration. J Neurosci Res 84:182–193

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Scarano F, Baltuch G (1999) Microglia as mediators of inflammatory and degenerative diseases. Annu Rev Neurosci 22:219–240

    Article  CAS  PubMed  Google Scholar 

  • Gu Y, Fujioka H, Mishra RS et al (2002) Prion peptide 106–126 modulates the aggregation of cellular prion protein and induces the synthesis of potentially neurotoxic transmembrane PrP. J Biol Chem 277:2275–2286

    Article  CAS  PubMed  Google Scholar 

  • Hanke ML, Kielian T (2011) Toll-like receptors in health and disease in the brain: mechanisms and therapeutic potential. Clin Sci (Lond) 121:367–387

    Article  CAS  Google Scholar 

  • Ibrahim ZA, Armour CL, Phipps S et al (2013) RAGE and TLRs: relatives, friends or neighbours? Mol Immunol 56:739–744

    Article  CAS  PubMed  Google Scholar 

  • Julius C, Heikenwalder M, Schwarz P et al (2008) Prion propagation in mice lacking central nervous system NF-kappaB signalling. J Gen Virol 89:1545–1550

    Article  CAS  PubMed  Google Scholar 

  • Kouadir M, Yang L, Tan R et al (2012) CD36 participates in PrP(106–126)-induced activation of microglia. PLoS One 7:e30756

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kuo HS, Tsai MJ, Huang MC et al (2011) Acid fibroblast growth factor and peripheral nerve grafts regulate Th2 cytokine expression, macrophage activation, polyamine synthesis, and neurotrophin expression in transected rat spinal cords. J Neurosci 31:4137–4147

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Liu Y, Hao W et al (2012) TLR2 is a primary receptor for Alzheimer’s amyloid beta peptide to trigger neuroinflammatory activation. J Immunol 188:1098–1107

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Liu A, Zhou X et al (2012) Prion peptide PrP106-126 induces inducible nitric oxide synthase and proinflammatory cytokine gene expression through the activation of NF-kappaB in macrophage cells. DNA Cell Biol 31:833–838

    Article  CAS  PubMed  Google Scholar 

  • Ma TC, Campana A, Lange PS et al (2010) A large-scale chemical screen for regulators of the arginase 1 promoter identifies the soy isoflavone daidzeinas a clinically approved small molecule that can promote neuronal protection or regeneration via a cAMP-independent pathway. J Neurosci 30:739–748

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Martinez FO, Helming L, Gordon S (2009) Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 27:451–483

    Article  CAS  PubMed  Google Scholar 

  • Monden M, Koyama H, Otsuka Y et al (2013) Receptor for advanced glycation end products regulates adipocyte hypertrophy and insulin sensitivity in mice: involvement of toll-like receptor 2. Diabetes 62:478–489

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Neniskyte U, Neher JJ, Brown GC (2011) Neuronal death induced by nanomolar amyloid beta is mediated by primary phagocytosis of neurons by microglia. J Biol Chem 286:39904–39913

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318

    Article  CAS  PubMed  Google Scholar 

  • Ofodile O (2011) Toll-like receptors (TLRs) and prion disease: relevance to pathology and novel therapy

  • Oliveira-Nascimento L, Massari P, Wetzler LM (2012) The role of TLR2 in infection and immunity. Front Immunol 3:79

    Article  PubMed Central  PubMed  Google Scholar 

  • Pan B, Yang L, Wang J et al (2014) c-Abl tyrosine kinase mediates neurotoxic prion peptide-induced neuronal apoptosis via regulating mitochondrial homeostasis. Mol Neurobiol 49:1102–1116

    Article  CAS  PubMed  Google Scholar 

  • Perry VH, Nicoll JA, Holmes C (2010) Microglia in neurodegenerative disease. Nat Rev Neurol 6:193–201

    Article  PubMed  Google Scholar 

  • Prinz M, Heikenwalder M, Schwarz P et al (2003) Prion pathogenesis in the absence of toll-like receptor signalling. EMBO Rep 4:195–199

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Prusiner SB (1998) Prions. Proc Natl Acad Sci U S A 95:13363–13383

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ransohoff RM, Perry VH (2009) Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 27:119–145

    Article  CAS  PubMed  Google Scholar 

  • Richard KL, Filali M, Prefontaine P et al (2008) Toll-like receptor 2 acts as a natural innate immune receptor to clear amyloid beta 1–42 and delay the cognitive decline in a mouse model of Alzheimer’s disease. J Neurosci 28:5784–5793

    Article  CAS  PubMed  Google Scholar 

  • Saba R, Gushue S, Huzarewich RL et al (2012) MicroRNA 146a (miR-146a) is over-expressed during prion disease and modulates the innate immune response and the microglial activation state. PLoS One 7:e30832

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sakai K, Hasebe R, Takahashi Y et al (2013) Absence of CD14 delays progression of prion diseases accompanied by increased microglial activation. J Virol 87:13433–13445

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Scott JR (1993) Scrapie pathogenesis. Br Med Bull 49:778–791

    CAS  PubMed  Google Scholar 

  • Shi F, Yang L, Kouadir M et al (2012) The NALP3 inflammasome is involved in neurotoxic prion peptide-induced microglial activation. J Neuroinflammation 9:73

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shi F, Yang L, Wang J et al (2013) Inhibition of phagocytosis reduced the classical activation of BV2 microglia induced by amyloidogenic fragments of beta-amyloid and prion proteins. Acta Biochim Biophys Sin (Shanghai) 45:973–978

    Article  CAS  Google Scholar 

  • Singh N, Gu Y, Bose S et al (2002) Prion peptide 106–126 as a model for prion replication and neurotoxicity. Front Biosci 7:a60–a71

    Article  CAS  PubMed  Google Scholar 

  • Soto C (2003) Unfolding the role of protein misfolding in neurodegenerative diseases. Nat Rev Neurosci 4:49–60

    Article  CAS  PubMed  Google Scholar 

  • Trudler D, Farfara D, Frenkel D (2010) Toll-like receptors expression and signaling in glia cells in neuro-amyloidogenic diseases: towards future therapeutic application. Mediators Inflamm

  • Yang L, Zhou X, Yang J et al (2008) Aspirin inhibits cytotoxicity of prion peptide PrP106-126 to neuronal cells associated with microglia activation in vitro. J Neuroimmunol 199:10–17

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Hreggvidsdottir HS, Palmblad K et al (2010) A critical cysteine is required for HMGB1 binding to Toll-like receptor 4 and activation of macrophage cytokine release. Proc Natl Acad Sci U S A 107:11942–11947

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National “Twelfth Five-Year” Plan for Science & Technology Support (Project No. 2012AA101302), MoSTRCUK international cooperation project (Project No. 2013DFG32500), the National Natural Science Foundation (Project No. 31172293, No. 31272532), Chinese Universities Scientific Fund (Project No. 2013QT004), and CAU Foreign Experts Major Projects (Project No. 2012Z018)

Conflict of interest

The authors declare no financial or commercial conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangmei Zhou.

Additional information

Jihong Wang and Deming Zhao contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zhao, D., Pan, B. et al. Toll-Like Receptor 2 Deficiency Shifts PrP106-126-Induced Microglial Activation from a Neurotoxic to a Neuroprotective Phenotype. J Mol Neurosci 55, 880–890 (2015). https://doi.org/10.1007/s12031-014-0442-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-014-0442-0

Keywords

Navigation