Skip to main content

Advertisement

Log in

Novel molecular and cellular therapeutic targets in acute lymphoblastic leukemia and lymphoproliferative disease

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

While the outcome for pediatric patients with lymphoproliferative disorders (LPD) or lymphoid malignancies, such as acute lymphoblastic leukemia (ALL), has improved dramatically, patients often suffer from therapeutic sequelae. Additionally, despite intensified treatment, the prognosis remains dismal for patients with refractory or relapsed disease. Thus, novel biologically targeted treatment approaches are needed. These targets can be identified by understanding how a loss of lymphocyte homeostasis can result in LPD or ALL. Herein, we review potential molecular and cellular therapeutic strategies that (i) target key signaling networks (e.g., PI3K/AKT/mTOR, JAK/STAT, Notch1, and SRC kinase family-containing pathways) which regulate lymphocyte growth, survival, and function; (ii) block the interaction of ALL cells with stromal cells or lymphoid growth factors secreted by the bone marrow microenvironment; or (iii) stimulate innate and adaptive immune responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pui CH, Evans WE. Treatment of acute lymphoblastic leukemia. N Engl J Med. 2006;354:166–78.

    PubMed  CAS  Google Scholar 

  2. Gaynon PS, Qu RP, Chappell RJ, Willoughby ML, Tubergen DG, Steinherz PG, et al. Survival after relapse in childhood acute lymphoblastic leukemia: impact of site and time to first relapse—the Children’s Cancer Group Experience. Cancer. 1998;82:1387–95.

    PubMed  CAS  Google Scholar 

  3. Gurney JG, Severson RK, Davis S, Robison LL. Incidence of cancer in children in the United States. Sex-, race-, and 1-year age-specific rates by histologic type. Cancer. 1995;75:2186–95.

    PubMed  CAS  Google Scholar 

  4. Chessells JM. Relapsed lymphoblastic leukaemia in children: a continuing challenge. Br J Haematol. 1998;102:423–38.

    PubMed  CAS  Google Scholar 

  5. Stoddart A, Fleming HE, Paige CJ. The role of the preBCR, the interleukin-7 receptor, and homotypic interactions during B-cell development. Immunol Rev. 2000;175:47–58.

    PubMed  CAS  Google Scholar 

  6. Hibbs ML, Harder KW. The duplicitous nature of the Lyn tyrosine kinase in growth factor signaling. Growth Factors. 2006;24:137–49.

    PubMed  CAS  Google Scholar 

  7. Kittipatarin C, Khaled AR. Interlinking interleukin-7. Cytokine. 2007;39:75–83.

    PubMed  CAS  Google Scholar 

  8. LeBien TW. Fates of human B-cell precursors. Blood. 2000;96:9–23.

    PubMed  CAS  Google Scholar 

  9. Paukku K, Silvennoinen O. STATs as critical mediators of signal transduction and transcription: lessons learned from STAT5. Cytokine Growth Factor Rev. 2004;15:435–55.

    PubMed  CAS  Google Scholar 

  10. Nowell PC. The minute chromosome (Phl) in chronic granulocytic leukemia. Blut. 1962;8:65–6.

    PubMed  CAS  Google Scholar 

  11. Rowley JD. Letter: a new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature. 1973;243:290–3.

    PubMed  CAS  Google Scholar 

  12. Clark SS, McLaughlin J, Timmons M, Pendergast AM, Ben-Neriah Y, Dow LW, et al. Expression of a distinctive BCR-ABL oncogene in Ph1-positive acute lymphocytic leukemia (ALL). Science. 1988;239:775–7.

    PubMed  CAS  Google Scholar 

  13. Uckun FM, Nachman JB, Sather HN, Sensel MG, Kraft P, Steinherz PG, et al. Clinical significance of Philadelphia chromosome positive pediatric acute lymphoblastic leukemia in the context of contemporary intensive therapies: a report from the Children’s Cancer Group. Cancer. 1998;83:2030–9.

    PubMed  CAS  Google Scholar 

  14. Piccaluga PP, Paolini S, Martinelli G. Tyrosine kinase inhibitors for the treatment of Philadelphia chromosome-positive adult acute lymphoblastic leukemia. Cancer. 2007;110:1178–86.

    PubMed  CAS  Google Scholar 

  15. Ilaria RL Jr, Van Etten RA. P210 and P190(BCR/ABL) induce the tyrosine phosphorylation and DNA binding activity of multiple specific STAT family members. J Biol Chem. 1996;271:31704–10.

    PubMed  CAS  Google Scholar 

  16. Nieborowska-Skorska M, Wasik MA, Slupianek A, Salomoni P, Kitamura T, Calabretta B, et al. Signal transducer and activator of transcription (STAT)5 activation by BCR/ABL is dependent on intact Src homology (SH)3 and SH2 domains of BCR/ABL and is required for leukemogenesis. J Exp Med. 1999;189:1229–42.

    PubMed  CAS  Google Scholar 

  17. Raitano AB, Halpern JR, Hambuch TM, Sawyers CL. The Bcr-Abl leukemia oncogene activates Jun kinase and requires Jun for transformation. Proc Natl Acad Sci USA. 1995;92:11746–50.

    PubMed  CAS  Google Scholar 

  18. Sawyers CL, Callahan W, Witte ON. Dominant negative MYC blocks transformation by ABL oncogenes. Cell. 1992;70:901–10.

    PubMed  CAS  Google Scholar 

  19. Skorski T, Bellacosa A, Nieborowska-Skorska M, Majewski M, Martinez R, Choi JK, et al. Transformation of hematopoietic cells by BCR/ABL requires activation of a PI-3 k/Akt-dependent pathway. EMBO J. 1997;16:6151–61.

    PubMed  CAS  Google Scholar 

  20. McGahon A, Bissonnette R, Schmitt M, Cotter KM, Green DR, Cotter TG. BCR-ABL maintains resistance of chronic myelogenous leukemia cells to apoptotic cell death. Blood. 1994;83:1179–87.

    PubMed  CAS  Google Scholar 

  21. Sirard C, Laneuville P, Dick JE. Expression of bcr-abl abrogates factor-dependent growth of human hematopoietic M07E cells by an autocrine mechanism. Blood. 1994;83:1575–85.

    PubMed  CAS  Google Scholar 

  22. Skorski T, Nieborowska-Skorska M, Wlodarski P, Wasik M, Trotta R, Kanakaraj P, et al. The SH3 domain contributes to BCR/ABL-dependent leukemogenesis in vivo: role in adhesion, invasion, and homing. Blood. 1998;91:406–18.

    PubMed  CAS  Google Scholar 

  23. Heisterkamp N, Jenster G, ten Hoeve J, Zovich D, Pattengale PK, Groffen J. Acute leukaemia in bcr/abl transgenic mice. Nature. 1990;344:251–3.

    PubMed  CAS  Google Scholar 

  24. Buchdunger E, Zimmermann J, Mett H, Meyer T, Muller M, Druker BJ, et al. Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative. Cancer Res. 1996;56:100–4.

    PubMed  CAS  Google Scholar 

  25. Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S, et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med. 1996;2:561–6.

    PubMed  CAS  Google Scholar 

  26. Cross SA, Lyseng-Williamson KA. Imatinib: in relapsed or refractory Philadelphia chromosome-positive acute lymphoblastic leukaemia. Drugs. 2007;67:2645–54.

    PubMed  CAS  Google Scholar 

  27. Wassmann B, Pfeifer H, Scheuring U, Klein SA, Gokbuget N, Binckebanck A, et al. Therapy with imatinib mesylate (Glivec) preceding allogeneic stem cell transplantation (SCT) in relapsed or refractory Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL). Leukemia. 2002;16:2358–65.

    PubMed  CAS  Google Scholar 

  28. Piccaluga PP, Rondoni M, Paolini S, Rosti G, Martinelli G, Baccarani M. Imatinib mesylate in the treatment of hematologic malignancies. Expert Opin Biol Ther. 2007;7:1597–611.

    PubMed  CAS  Google Scholar 

  29. Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN, et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science. 2001;293:876–80.

    PubMed  CAS  Google Scholar 

  30. Gururajan M, Dasu T, Shahidain S, Jennings CD, Robertson DA, Rangnekar VM, et al. Spleen tyrosine kinase (Syk), a novel target of curcumin, is required for B lymphoma growth. J Immunol. 2007;178:111–21.

    PubMed  CAS  Google Scholar 

  31. Seckinger P, Fougereau M. Activation of src family kinases in human pre-B cells by IL-7. J Immunol. 1994;153:97–109.

    PubMed  CAS  Google Scholar 

  32. Taguchi T, Kiyokawa N, Sato N, Saito M, Fujimoto J. Characteristic expression of Hck in human B-cell precursors. Exp Hematol. 2000;28:349.

    PubMed  CAS  Google Scholar 

  33. Johnson FM, Saigal B, Tran H, Donato NJ. Abrogation of signal transducer and activator of transcription 3 reactivation after Src kinase inhibition results in synergistic antitumor effects. Clin Cancer Res. 2007;13:4233–44.

    PubMed  CAS  Google Scholar 

  34. Hofmeister R, Khaled AR, Benbernou N, Rajnavolgyi E, Muegge K, Durum SK. Interleukin-7: physiological roles and mechanisms of action. Cytokine Growth Factor Rev. 1999;10:41–60.

    PubMed  CAS  Google Scholar 

  35. Scupoli MT, Perbellini O, Krampera M, Vinante F, Cioffi F, Pizzolo G. Interleukin 7 requirement for survival of T-cell acute lymphoblastic leukemia and human thymocytes on bone marrow stroma. Haematologica. 2007;92:264–6.

    PubMed  Google Scholar 

  36. Scupoli MT, Vinante F, Krampera M, Vincenzi C, Nadali G, Zampieri F, et al. Thymic epithelial cells promote survival of human T-cell acute lymphoblastic leukemia blasts: the role of interleukin-7. Haematologica. 2003;88:1229–37.

    PubMed  CAS  Google Scholar 

  37. Touw I, Pouwels K, van Agthoven T, van Gurp R, Budel L, Hoogerbrugge H, et al. Interleukin-7 is a growth factor of precursor B and T acute lymphoblastic leukemia. Blood. 1990;75:2097–101.

    PubMed  CAS  Google Scholar 

  38. Baersch G, Mollers T, Hotte A, Dockhorn-Dworniczak B, Rube C, Ritter J, et al. Good engraftment of B-cell precursor ALL in NOD-SCID mice. Klin Padiatr. 1997;209:178–85.

    Article  PubMed  CAS  Google Scholar 

  39. Consolini R, Pui CH, Behm FG, Raimondi SC, Campana D. In vitro cytotoxicity of docetaxel in childhood acute leukemias. J Clin Oncol. 1998;16:907–13.

    PubMed  CAS  Google Scholar 

  40. Ek O, Gaynon P, Zeren T, Chelstrom LM, Myers DE, Uckun FM. Treatment of human B-cell precursor leukemia in SCID mice by using a combination of the anti-CD19 immunotoxin B43-PAP with the standard chemotherapeutic drugs vincristine, methylprednisolone, and L-asparaginase. Leuk Lymphoma. 1998;31:143–9.

    PubMed  CAS  Google Scholar 

  41. Borgmann A, Baldy C, von Stackelberg A, Beyermann B, Fichtner I, Nurnberg P, et al. Childhood all blasts retain phenotypic and genotypic characteristics upon long-term serial passage in NOD/SCID mice. Pediatr Hematol Oncol. 2000;17:635–50.

    PubMed  CAS  Google Scholar 

  42. Liem NL, Papa RA, Milross CG, Schmid MA, Tajbakhsh M, Choi S, et al. Characterization of childhood acute lymphoblastic leukemia xenograft models for the preclinical evaluation of new therapies. Blood. 2004;103:3905–14.

    PubMed  CAS  Google Scholar 

  43. Kolb EA, Gorlick R, Houghton PJ, Morton CL, Lock RB, Tajbakhsh M, et al. Initial testing of dasatinib by the pediatric preclinical testing program. Pediatr Blood Cancer. 2008;50:1198–206.

    PubMed  Google Scholar 

  44. Vignot S, Faivre S, Aguirre D, Raymond E. mTOR-targeted therapy of cancer with rapamycin derivatives. Ann Oncol. 2005;16:525–37.

    PubMed  CAS  Google Scholar 

  45. Houghton PJ, Huang S. mTOR as a target for cancer therapy. Curr Top Microbiol Immunol. 2004;279:339–59.

    PubMed  CAS  Google Scholar 

  46. Steelman LS, Pohnert SC, Shelton JG, Franklin RA, Bertrand FE, McCubrey JA. JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis. Leukemia. 2004;18:189–218.

    PubMed  CAS  Google Scholar 

  47. Amaravadi R, Thompson CB. The survival kinases Akt and Pim as potential pharmacological targets. J Clin Invest. 2005;115:2618–24.

    PubMed  CAS  Google Scholar 

  48. Shaw RJ, Cantley LC. Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature. 2006;441:424–30.

    PubMed  CAS  Google Scholar 

  49. Bhaskar PT, Hay N. The two TORCs and Akt. Dev Cell. 2007;12:487–502.

    PubMed  CAS  Google Scholar 

  50. Harrington LS, Findlay GM, Lamb RF. Restraining PI3K: mTOR signalling goes back to the membrane. Trends Biochem Sci. 2005;30:35–42.

    PubMed  CAS  Google Scholar 

  51. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science. 2005;307:1098–101.

    PubMed  CAS  Google Scholar 

  52. Sun SY, Rosenberg LM, Wang X, Zhou Z, Yue P, Fu H, et al. Activation of Akt and eIF4E survival pathways by rapamycin-mediated mammalian target of rapamycin inhibition. Cancer Res. 2005;65:7052–8.

    PubMed  CAS  Google Scholar 

  53. O’Reilly KE, Rojo F, She QB, Solit D, Mills GB, Smith D, et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res. 2006;66:1500–8.

    PubMed  CAS  Google Scholar 

  54. Akcakanat A, Singh G, Hung MC, Meric-Bernstam F. Rapamycin regulates the phosphorylation of rictor. Biochem Biophys Res Commun. 2007;362:330–3.

    PubMed  CAS  Google Scholar 

  55. Sarbassov DD, Ali SM, Sengupta S, Sheen JH, Hsu PP, Bagley AF, et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell. 2006;22:159–68.

    PubMed  CAS  Google Scholar 

  56. Zeng Z, Sarbassov dos D, Samudio IJ, Yee KW, Munsell MF, Ellen Jackson C, et al. Rapamycin derivatives reduce mTORC2 signaling and inhibit AKT activation in AML. Blood. 2007;109:3509–12.

    PubMed  CAS  Google Scholar 

  57. Inoki K, Corradetti MN, Guan KL. Dysregulation of the TSC-mTOR pathway in human disease. Nat Genet. 2005;37:19–24.

    PubMed  CAS  Google Scholar 

  58. Hay N. The Akt-mTOR tango and its relevance to cancer. Cancer Cell. 2005;8:179–83.

    PubMed  CAS  Google Scholar 

  59. Vivanco I, Sawyers CL. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer. 2002;2:489–501.

    PubMed  CAS  Google Scholar 

  60. Cully M, You H, Levine AJ, Mak TW. Beyond PTEN mutations: the PI3 K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer. 2006;6:184–92.

    PubMed  CAS  Google Scholar 

  61. Sehgal SN, Baker H, Vezina C. Rapamycin (AY-22,989), a new antifungal antibiotic. II. Fermentation, isolation and characterization. J Antibiot (Tokyo). 1975;28:727–32.

    CAS  Google Scholar 

  62. Easton JB, Houghton PJ. mTOR and cancer therapy. Oncogene. 2006;25:6436–46.

    PubMed  CAS  Google Scholar 

  63. Sabatini DM. mTOR and cancer: insights into a complex relationship. Nat Rev Cancer. 2006;6:729–34.

    PubMed  CAS  Google Scholar 

  64. Hudes G, Carducci M, Tomczak P, Dutcher J, Figlin R, Kapoor A, et al. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med. 2007;356:2271–81.

    PubMed  CAS  Google Scholar 

  65. Majewski M, Korecka M, Kossev P, Li S, Goldman J, Moore J, et al. The immunosuppressive macrolide RAD inhibits growth of human Epstein-Barr virus-transformed B lymphocytes in vitro and in vivo: a potential approach to prevention and treatment of posttransplant lymphoproliferative disorders. Proc Natl Acad Sci USA. 2000;97:4285–90.

    PubMed  CAS  Google Scholar 

  66. Gottschalk AR, Boise LH, Thompson CB, Quintans J. Identification of immunosuppressant-induced apoptosis in a murine B-cell line and its prevention by bcl-x but not bcl-2. Proc Natl Acad Sci USA. 1994;91:7350–4.

    PubMed  CAS  Google Scholar 

  67. Muthukkumar S, Ramesh TM, Bondada S. Rapamycin, a potent immunosuppressive drug, causes programmed cell death in B lymphoma cells. Transplantation. 1995;60:264–70.

    PubMed  CAS  Google Scholar 

  68. Ringshausen I, Peschel C, Decker T. Mammalian target of rapamycin (mTOR) inhibition in chronic lymphocytic B-cell leukemia: a new therapeutic option. Leuk Lymphoma. 2005;46:11–9.

    PubMed  CAS  Google Scholar 

  69. Brown VI, Fang J, Alcorn K, Barr R, Kim JM, Wasserman R, et al. Rapamycin is active against B-precursor leukemia in vitro and in vivo, an effect that is modulated by IL-7-mediated signaling. Proc Natl Acad Sci USA. 2003;100:15113–8.

    PubMed  CAS  Google Scholar 

  70. Brown VI, Hulitt J, Fish J, Sheen C, Bruno M, Xu Q, et al. Thymic stromal-derived lymphopoietin induces proliferation of pre-B leukemia and antagonizes mTOR inhibitors, suggesting a role for interleukin-7Ralpha signaling. Cancer Res. 2007;67:9963–70.

    PubMed  CAS  Google Scholar 

  71. Teachey DT, Obzut DA, Cooperman J, Fang J, Carroll M, Choi JK, et al. The mTOR inhibitor CCI-779 induces apoptosis and inhibits growth in preclinical models of primary adult human ALL. Blood. 2006;107:1149–55.

    PubMed  CAS  Google Scholar 

  72. Goodfellow PJ, Wells SA Jr. RET gene and its implications for cancer. J Natl Cancer Inst. 1995;87:1515–23.

    PubMed  CAS  Google Scholar 

  73. Wasserman R, Zeng XX, Hardy RR. The evolution of B precursor leukemia in the Emu-ret mouse. Blood. 1998;92:273–82.

    PubMed  CAS  Google Scholar 

  74. Chou TC, Talalay P. Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul. 1984;22:27–55.

    PubMed  CAS  Google Scholar 

  75. Fan QW, Cheng CK, Nicolaides TP, Hackett CS, Knight ZA, Shokat KM, et al. A dual phosphoinositide-3-kinase alpha/mTOR inhibitor cooperates with blockade of epidermal growth factor receptor in PTEN-mutant glioma. Cancer Res. 2007;67:7960–5.

    PubMed  CAS  Google Scholar 

  76. Raynaud FI, Eccles S, Clarke PA, Hayes A, Nutley B, Alix S, et al. Pharmacologic characterization of a potent inhibitor of class I phosphatidylinositide 3-kinases. Cancer Res. 2007;67:5840–50.

    PubMed  CAS  Google Scholar 

  77. Kang J, Der SD. Cytokine functions in the formative stages of a lymphocyte’s life. Curr Opin Immunol. 2004;16:180–90.

    PubMed  CAS  Google Scholar 

  78. Lin JX, Migone TS, Tsang M, Friedmann M, Weatherbee JA, Zhou L, et al. The role of shared receptor motifs and common Stat proteins in the generation of cytokine pleiotropy and redundancy by IL-2, IL-4, IL-7, IL-13, and IL-15. Immunity. 1995;2:331–9.

    PubMed  CAS  Google Scholar 

  79. Venkitaraman AR, Cowling RJ. Interleukin-7 induces the association of phosphatidylinositol 3-kinase with the alpha chain of the interleukin-7 receptor. Eur J Immunol. 1994;24:2168–74.

    PubMed  CAS  Google Scholar 

  80. Palmer MJ, Mahajan VS, Trajman LC, Irvine DJ, Lauffenburger DA, Chen J. Interleukin-7 receptor signaling network: an integrated systems perspective. Cell Mol Immunol. 2008;5:79–89.

    Article  PubMed  CAS  Google Scholar 

  81. Pandey A, Ozaki K, Baumann H, Levin SD, Puel A, Farr AG, et al. Cloning of a receptor subunit required for signaling by thymic stromal lymphopoietin. Nat Immunol. 2000;1:59–64.

    PubMed  CAS  Google Scholar 

  82. Isaksen DE, Baumann H, Trobridge PA, Farr AG, Levin SD, Ziegler SF. Requirement for stat5 in thymic stromal lymphopoietin-mediated signal transduction. J Immunol. 1999;163:5971–7.

    PubMed  CAS  Google Scholar 

  83. Nagasawa T. Microenvironmental niches in the bone marrow required for B-cell development. Nat Rev Immunol. 2006;6:107–16.

    PubMed  CAS  Google Scholar 

  84. Mudry RE, Fortney JE, York T, Hall BM, Gibson LF. Stromal cells regulate survival of B-lineage leukemic cells during chemotherapy. Blood. 2000;96:1926–32.

    PubMed  CAS  Google Scholar 

  85. Lagneaux L, Delforge A, Bron D, De Bruyn C, Stryckmans P. Chronic lymphocytic leukemic B cells but not normal B cells are rescued from apoptosis by contact with normal bone marrow stromal cells. Blood. 1998;91:2387–96.

    PubMed  CAS  Google Scholar 

  86. Meads MB, Hazlehurst LA, Dalton WS. The bone marrow microenvironment as a tumor sanctuary and contributor to drug resistance. Clin Cancer Res. 2008;14:2519–26.

    PubMed  CAS  Google Scholar 

  87. Corcione A, Arduino N, Ferretti E, Pistorio A, Spinelli M, Ottonello L, et al. Chemokine receptor expression and function in childhood acute lymphoblastic leukemia of B-lineage. Leuk Res. 2006;30:365–72.

    PubMed  CAS  Google Scholar 

  88. Juarez J, Baraz R, Gaundar S, Bradstock K, Bendall L. Interaction of interleukin-7 and interleukin-3 with the CXCL12-induced proliferation of B-cell progenitor acute lymphoblastic leukemia. Haematologica. 2007;92:450–9.

    PubMed  CAS  Google Scholar 

  89. Zeng Z, Samudio IJ, Munsell M, An J, Huang Z, Estey E, et al. Inhibition of CXCR4 with the novel RCP168 peptide overcomes stroma-mediated chemoresistance in chronic and acute leukemias. Mol Cancer Ther. 2006;5:3113–21.

    PubMed  CAS  Google Scholar 

  90. Bertrand FE, Eckfeldt CE, Fink JR, Lysholm AS, Pribyl JA, Shah N, et al. Microenvironmental influences on human B-cell development. Immunol Rev. 2000;175:175–86.

    PubMed  CAS  Google Scholar 

  91. Bertrand FE, Spengemen JD, Shelton JG, McCubrey JA. Inhibition of PI3K, mTOR and MEK signaling pathways promotes rapid apoptosis in B-lineage ALL in the presence of stromal cell support. Leukemia. 2005;19:98–102.

    PubMed  CAS  Google Scholar 

  92. Wang L, Fortney JE, Gibson LF. Stromal cell protection of B-lineage acute lymphoblastic leukemic cells during chemotherapy requires active Akt. Leuk Res. 2004;28:733–42.

    PubMed  Google Scholar 

  93. Fortney JE, Zhao W, Wenger SL, Gibson LF. Bone marrow stromal cells regulate caspase 3 activity in leukemic cells during chemotherapy. Leuk Res. 2001;25:901–7.

    PubMed  CAS  Google Scholar 

  94. Kay NE, Shanafelt TD, Strege AK, Lee YK, Bone ND, Raza A. Bone biopsy derived marrow stromal elements rescue chronic lymphocytic leukemia B-cells from spontaneous and drug induced cell death and facilitates an “angiogenic switch”. Leuk Res. 2007;31:899–906.

    PubMed  CAS  Google Scholar 

  95. Sims JE, Williams DE, Morrissey PJ, Garka K, Foxworthe D, Price V, et al. Molecular cloning and biological characterization of a novel murine lymphoid growth factor. J Exp Med. 2000;192:671–80.

    PubMed  CAS  Google Scholar 

  96. Wei C, Zeff R, Goldschneider I. Murine pro-B cells require IL-7 and its receptor complex to up-regulate IL-7R alpha, terminal deoxynucleotidyltransferase, and c mu expression. J Immunol. 2000;164:1961–70.

    PubMed  CAS  Google Scholar 

  97. Levin SD, Koelling RM, Friend SL, Isaksen DE, Ziegler SF, Perlmutter RM, et al. Thymic stromal lymphopoietin: a cytokine that promotes the development of IgM+ B cells in vitro and signals via a novel mechanism. J Immunol. 1999;162:677–83.

    PubMed  CAS  Google Scholar 

  98. Vosshenrich CA, Cumano A, Muller W, Di Santo JP, Vieira P. Thymic stromal-derived lymphopoietin distinguishes fetal from adult B cell development. Nat Immunol. 2003;4:773–9.

    PubMed  CAS  Google Scholar 

  99. Karawajew L, Ruppert V, Wuchter C, Kosser A, Schrappe M, Dorken B, et al. Inhibition of in vitro spontaneous apoptosis by IL-7 correlates with bcl-2 up-regulation, cortical/mature immunophenotype, and better early cytoreduction of childhood T-cell acute lymphoblastic leukemia. Blood. 2000;96:297–306.

    PubMed  CAS  Google Scholar 

  100. Wuchter C, Ruppert V, Schrappe M, Dorken B, Ludwig WD, Karawajew L. In vitro susceptibility to dexamethasone- and doxorubicin-induced apoptotic cell death in context of maturation stage, responsiveness to interleukin 7, and early cytoreduction in vivo in childhood T-cell acute lymphoblastic leukemia. Blood. 2002;99:4109–15.

    PubMed  CAS  Google Scholar 

  101. Renard N, Duvert V, Matthews DJ, Pages MP, Magaud JP, Manel AM, et al. Proliferation of MIELIKI a novel t(7;9) early pre-B acute lymphoblastic leukemia cell line is inhibited concomitantly by IL-4 and IL-7. Leukemia. 1995;9:1219–26.

    PubMed  CAS  Google Scholar 

  102. Nishii K, Katayama N, Miwa H, Shikami M, Masuya M, Shiku H, et al. Survival of human leukaemic B-cell precursors is supported by stromal cells and cytokines: association with the expression of bcl-2 protein. Br J Haematol. 1999;105:701–10.

    PubMed  CAS  Google Scholar 

  103. Teachey DT, Sheen C, Hall J, Ryan T, Brown VI, Fish J, et al. mTOR inhibitors are synergistic with methotrexate: an effective combination to treat acute lymphoblastic leukemia (ALL). Blood. Prepublished online. June 10, 2008.

  104. Saydem G, Celikkaya H, Cole P, Bertino J, Erickan-Abali E. mTOR inhibition leads to increased sensitivity to methotrexate. AACR 98th Annual Meeting 2005.

  105. Serra M, Reverter-Branchat G, Maurici D, Benini S, Shen JN, Chano T, et al. Analysis of dihydrofolate reductase and reduced folate carrier gene status in relation to methotrexate resistance in osteosarcoma cells. Ann Oncol. 2004;15:151–60.

    PubMed  CAS  Google Scholar 

  106. Laakko T, Schwartz RC, Fraker PJ. IL-7-mediated protection of pro and pre-B cells from the adverse effects of corticosterone. Cell Immunol. 2002;220:39–50.

    PubMed  CAS  Google Scholar 

  107. Shah OJ, Iniguez-Lluhi JA, Romanelli A, Kimball SR, Jefferson LS. The activated glucocorticoid receptor modulates presumptive autoregulation of ribosomal protein S6 protein kinase, p70 S6K. J Biol Chem. 2002;277:2525–33.

    PubMed  CAS  Google Scholar 

  108. Nagata S, Golstein P. The Fas death factor. Science. 1995;267:1449–56.

    PubMed  CAS  Google Scholar 

  109. Bleesing JJ. Autoimmune lymphoproliferative syndrome: a genetic disorder of abnormal lymphocyte apoptosis. Immunol Allergy Clin North Am. 2002;22:339–49.

    Google Scholar 

  110. Sneller MC, Straus SE, Jaffe ES, Jaffe JS, Fleisher TA, Stetler-Stevenson M, et al. A novel lymphoproliferative/autoimmune syndrome resembling murine lpr/gld disease. J Clin Invest. 1992;90:334–41.

    PubMed  CAS  Google Scholar 

  111. Bleesing JJ, Brown MR, Novicio C, Guarraia D, Dale JK, Straus SE, et al. A composite picture of TcR alpha/beta(+) CD4(−)CD8(−) T Cells (alpha/beta-DNTCs) in humans with autoimmune lymphoproliferative syndrome. Clin Immunol. 2002;104:21–30.

    PubMed  CAS  Google Scholar 

  112. Takahashi T, Tanaka M, Brannan CI, Jenkins NA, Copeland NG, Suda T, et al. Generalized lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand. Cell. 1994;76:969–76.

    PubMed  CAS  Google Scholar 

  113. Watanabe-Fukunaga R, Brannan CI, Copeland NG, Jenkins NA, Nagata S. Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature. 1992;356:314–7.

    PubMed  CAS  Google Scholar 

  114. Fisher GH, Rosenberg FJ, Straus SE, Dale JK, Middleton LA, Lin AY, et al. Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell. 1995;81:935–46.

    PubMed  CAS  Google Scholar 

  115. Rieux-Laucat F, Le Deist F, Hivroz C, Roberts IA, Debatin KM, Fischer A, et al. Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science. 1995;268:1347–9.

    PubMed  CAS  Google Scholar 

  116. Rieux-Laucat F, Le Deist F, Fischer A. Autoimmune lymphoproliferative syndromes: genetic defects of apoptosis pathways. Cell Death Differ. 2003;10:124–33.

    PubMed  CAS  Google Scholar 

  117. Jackson CE, Fischer RE, Hsu AP, Anderson SM, Choi Y, Wang J, et al. Autoimmune lymphoproliferative syndrome with defective Fas: genotype influences penetrance. Am J Hum Genet. 1999;64:1002–14.

    PubMed  CAS  Google Scholar 

  118. Straus SE, Sneller M, Lenardo MJ, Puck JM, Strober W. An inherited disorder of lymphocyte apoptosis: the autoimmune lymphoproliferative syndrome. Ann Intern Med. 1999;130:591–601.

    PubMed  CAS  Google Scholar 

  119. Sneller MC, Wang J, Dale JK, Strober W, Middelton LA, Choi Y, et al. Clincial, immunologic, and genetic features of an autoimmune lymphoproliferative syndrome associated with abnormal lymphocyte apoptosis. Blood. 1997;89:1341–8.

    PubMed  CAS  Google Scholar 

  120. Straus SE, Jaffe ES, Puck JM, Dale JK, Elkon KB, Rosen-Wolff A, et al. The development of lymphomas in families with autoimmune lymphoproliferative syndrome with germline Fas mutations and defective lymphocyte apoptosis. Blood. 2001;98:194–200.

    PubMed  CAS  Google Scholar 

  121. Bleesing JJ, Straus SE, Fleisher TA. Autoimmune lymphoproliferative syndrome. A human disorder of abnormal lymphocyte survival. Pediatr Clin North Am. 2000;47:1291–310.

    PubMed  CAS  Google Scholar 

  122. Drappa J, Vaishnaw AK, Sullivan KE, Chu JL, Elkon KB. Fas gene mutations in the Canale-Smith syndrome, an inherited lymphoproliferative disorder associated with autoimmunity. N Engl J Med. 1996;335:1643–9.

    PubMed  CAS  Google Scholar 

  123. Heelan BT, Tormey V, Amlot P, Payne E, Mehta A, Webster AD. Effect of anti-CD20 (rituximab) on resistant thrombocytopenia in autoimmune lymphoproliferative syndrome. Br J Haematol. 2002;118:1078–81.

    PubMed  Google Scholar 

  124. Rao VK, Dugan F, Dale JK, Davis J, Tretler J, Hurley JK, et al. Use of mycophenolate mofetil for chronic, refractory immune cytopenias in children with autoimmune lymphoproliferative syndrome. Br J Haematol. 2005;129:534–8.

    PubMed  CAS  Google Scholar 

  125. van der Werff Ten Bosch J, Schotte P, Ferster A, Azzi N, Boehler T, Laurey G, et al. Reversion of autoimmune lymphoproliferative syndrome with an antimalarial drug: preliminary results of a clinical cohort study and molecular observations. Br J Haematol. 2002;117:176–88.

    PubMed  Google Scholar 

  126. Rao VK, Dowdell KC, Dale JK, Dugan F, Pesnicak L, Bi LL, et al. Pyrimethamine treatment does not ameliorate lymphoproliferation or autoimmune disease in MRL/lpr−/− mice or in patients with autoimmune lymphoproliferative syndrome. Am J Hematol. 2007;82:1049–55.

    PubMed  CAS  Google Scholar 

  127. Teachey DT, Obzut DA, Axsom K, Choi JK, Goldsmith KC, Hall J, et al. Rapamycin improves lymphoproliferative disease in murine autoimmune lymphoproliferative syndrome (ALPS). Blood. 2006;108:1965–71.

    PubMed  CAS  Google Scholar 

  128. Teachey DT, Seif AE, Brown VI, Bruno M, Bunte RM, Chang YJ, et al. Targeting Notch signaling in autoimmune and lymphoproliferative disease. Blood. 2008;111:705–14.

    PubMed  CAS  Google Scholar 

  129. Dowdell KC, Pesnicak L, Hoffmann V, Steadman KMR, Rao VK, et al. Valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, diminishes lymphoproliferation in the fas deficient MRL/lpr−/− murine model of autoimmune lymphoproliferative syndrome (ALPS). Blood (ASH Annual Meeting Abstracts). 2006;108:2497.

    Google Scholar 

  130. Bobe P, Bonardelle D, Benihoud K, Opolon P, Chelbi-Alix MK. Arsenic trioxide: a promising novel therapeutic agent for lymphoproliferative and autoimmune syndromes in MRL/lpr mice. Blood. 2006;108:3967–75.

    PubMed  CAS  Google Scholar 

  131. Maillard I, Fang T, Pear WS. Regulation of lymphoid development, differentiation, and function by the Notch pathway. Annu Rev Immunol. 2005;23:945–74.

    PubMed  CAS  Google Scholar 

  132. Hyde LA, McHugh NA, Chen J, Zhang Q, Manfra D, Nomeir AA, et al. Studies to investigate the in vivo therapeutic window of the gamma-secretase inhibitor N2-[(2S)-2-(3,5-difluorophenyl)-2-hydroxyethanoyl]-N1-[(7S)-5-methyl-6-oxo-6,7-dihydro-5H-dibenzo[b,d]azepin-7-yl]-L-alaninamide (LY411,575) in the CRND8 mouse. J Pharmacol Exp Ther. 2006;319:1133–43.

    PubMed  CAS  Google Scholar 

  133. van Es JH, van Gijn ME, Riccio O, Van den Born M, Vooijs M, Begthel H, et al. Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature. 2005;435:959–63.

    PubMed  Google Scholar 

  134. Best JD, Smith DW, Reilly MA, O’Donnell R, Lewis HD, Ellis S, et al. The novel gamma secretase inhibitor N-[cis-4-[(4-chlorophenyl)sulfonyl]-4-(2, 5-difluorophenyl)cyclohexyl]-1,1,1-trifluoromethanesulfonamide (MRK-560) reduces amyloid plaque deposition without evidence of notch-related pathology in the Tg2576 mouse. J Pharmacol Exp Ther. 2007;320:552–8.

    PubMed  CAS  Google Scholar 

  135. Wong GT, Manfra D, Poulet FM, Zhang Q, Josien H, Bara T, et al. Chronic treatment with the gamma-secretase inhibitor LY-411,575 inhibits beta-amyloid peptide production and alters lymphopoiesis and intestinal cell differentiation. J Biol Chem. 2004;279:12876–82.

    PubMed  CAS  Google Scholar 

  136. Akiko I, Yoichi M, Hiroshi S, Koji J. Inhibition of gamma-secretase mediated notch signaling suppresses experimental autoimmune uveoretinitis. Proc Jpn Soc Immunol. 2006;36:194.

    Google Scholar 

  137. Jurynczyk M, Jurewicz A, Bielecki B, Raine CS, Selmaj K. Overcoming failure to repair demyelination in EAE: gamma-secretase inhibition of Notch signaling. J Neurol Sci. 2008;265:5–11.

    PubMed  CAS  Google Scholar 

  138. Demehri S, Liu Z, Lee J, Lin MH, Crosby SD, Roberts CJ, et al. Notch-deficient skin induces a lethal systemic B-lymphoproliferative disorder by secreting TSLP, a sentinel for epidermal integrity. PLoS Biol. 2008;6:e123.

    PubMed  Google Scholar 

  139. Tournoy J, Bossuyt X, Snellinx A, Regent M, Garmyn M, Serneels L, et al. Partial loss of presenilins causes seborrheic keratosis and autoimmune disease in mice. Hum Mol Genet. 2004;13:1321–31.

    PubMed  CAS  Google Scholar 

  140. Bunin N, Carston M, Wall D, Adams R, Casper J, Kamani N, et al. Unrelated marrow transplantation for children with acute lymphoblastic leukemia in second remission. Blood. 2002;99:3151–7.

    PubMed  CAS  Google Scholar 

  141. Horowitz MM, Gale RP, Sondel PM, Goldman JM, Kersey J, Kolb HJ, et al. Graft-versus-leukemia reactions after bone marrow transplantation. Blood. 1990;75:555–62.

    PubMed  CAS  Google Scholar 

  142. Weiden PL, Sullivan KM, Flournoy N, Storb R, Thomas ED. Antileukemic effect of chronic graft-versus-host disease: contribution to improved survival after allogeneic marrow transplantation. N Engl J Med. 1981;304:1529–33.

    PubMed  CAS  Google Scholar 

  143. Barbaric D, Corthals SL, Jastaniah WA, Asalanian S, Shimizu H, Reid GS, et al. Detection of WT1-specific T cells in paediatric acute lymphoblastic leukaemia patients in first remission. Br J Haematol. 2008;141:271–3.

    PubMed  Google Scholar 

  144. Yotnda P, Garcia F, Peuchmaur M, Grandchamp B, Duval M, Lemonnier F, et al. Cytotoxic T cell response against the chimeric ETV6-AML1 protein in childhood acute lymphoblastic leukemia. J Clin Invest. 1998;102:455–62.

    PubMed  CAS  Google Scholar 

  145. Nijmeijer BA, Willemze R, Falkenburg JH. An animal model for human cellular immunotherapy: specific eradication of human acute lymphoblastic leukemia by cytotoxic T lymphocytes in NOD/scid mice. Blood. 2002;100:654–60.

    PubMed  CAS  Google Scholar 

  146. Reid GS, Terrett L, Alessandri AJ, Grubb S, Stork L, Seibel N, et al. Altered patterns of T cell cytokine production induced by relapsed pre-B ALL cells. Leuk Res. 2003;27:1135–42.

    PubMed  CAS  Google Scholar 

  147. Alessandri AJ, Reid GS, Bader SA, Massing BG, Sorensen PH, Schultz KR. ETV6 (TEL)-AML1 pre-B acute lymphoblastic leukaemia cells are associated with a distinct antigen-presenting phenotype. Br J Haematol. 2002;116:266–72.

    PubMed  Google Scholar 

  148. Maecker B, Mougiakakos D, Zimmermann M, Behrens M, Hollander S, Schrauder A, et al. Dendritic cell deficiencies in pediatric acute lymphoblastic leukemia patients. Leukemia. 2006;20:645–9.

    PubMed  CAS  Google Scholar 

  149. Reid GS, Bharya S, Klingemann HG, Schultz KR. Differential killing of pre-B acute lymphoblastic leukaemia cells by activated NK cells and the NK-92 ci cell line. Clin Exp Immunol. 2002;129:265–71.

    PubMed  CAS  Google Scholar 

  150. Romanski A, Bug G, Becker S, Kampfmann M, Seifried E, Hoelzer D, et al. Mechanisms of resistance to natural killer cell-mediated cytotoxicity in acute lymphoblastic leukemia. Exp Hematol. 2005;33:344–52.

    PubMed  CAS  Google Scholar 

  151. Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol. 2003;21:335–76.

    PubMed  CAS  Google Scholar 

  152. Krieg AM. CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol. 2002;20:709–60.

    PubMed  CAS  Google Scholar 

  153. Fujii H, Trudeau JD, Teachey DT, Fish JD, Grupp SA, Schultz KR, et al. In vivo control of acute lymphoblastic leukemia by immunostimulatory CpG oligonucleotides. Blood. 2007;109:2008–13.

    PubMed  CAS  Google Scholar 

  154. Reid GS, She K, Terrett L, Food MR, Trudeau JD, Schultz KR. CpG stimulation of precursor B-lineage acute lymphoblastic leukemia induces a distinct change in costimulatory molecule expression and shifts allogeneic T cells toward a Th1 response. Blood. 2005;105:3641–7.

    PubMed  CAS  Google Scholar 

  155. Cardoso AA, Schultze JL, Boussiotis VA, Freeman GJ, Seamon MJ, Laszlo S, et al. Pre-B acute lymphoblastic leukemia cells may induce T-cell anergy to alloantigen. Blood. 1996;88:41–8.

    PubMed  CAS  Google Scholar 

  156. Corthals SL, Wynne K, She K, Shimizu H, Curman D, Garbutt K, et al. Differential immune effects mediated by Toll-like receptors stimulation in precursor B-cell acute lymphoblastic leukaemia. Br J Haematol. 2006;132:452–8.

    PubMed  CAS  Google Scholar 

  157. Montagna D, Maccario R, Locatelli F, Montini E, Pagani S, Bonetti F, et al. Emergence of antitumor cytolytic T cells is associated with maintenance of hematologic remission in children with acute myeloid leukemia. Blood. 2006;108:3843–50.

    PubMed  CAS  Google Scholar 

  158. Miller RW, Young JL Jr, Novakovic B. Childhood cancer. Cancer. 1995;75:395–405.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This article was supported by grants NIH 1 K08 CA104882-01A1, grant # IRG-78-002-30 from the American Cancer Society, the Children’s Cancer Fund, and the Florence R.C. Murray Program at the Children’s Hospital of Philadelphia (VIB); the WW Smith Charitable Trust (VIB and SAG); NIH CA102646, CA1116660, ACS RSG0507101, and the Sanford Chair and Weinberg Funds of the Children’s Hospital of Philadelphia (SAG), ASCO Young Investigator and Career Development Awards, and the Larry and Helen Hoag Foundation Clinical Translational Research Career Development Award (DTT); NIH R03 CA123554, Foerderer-Murray Program at the Children’s Hospital of Philadelphia (GSDR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerie I. Brown.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, V.I., Seif, A.E., Reid, G.S.D. et al. Novel molecular and cellular therapeutic targets in acute lymphoblastic leukemia and lymphoproliferative disease. Immunol Res 42, 84–105 (2008). https://doi.org/10.1007/s12026-008-8038-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-008-8038-9

Keywords

Navigation