Skip to main content

Advertisement

Log in

Classic Architecture with Multicentricity and Local Recurrence, and Absence of TERT Promoter Mutations are Correlates of BRAF V600E Harboring Pediatric Papillary Thyroid Carcinomas

  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

This study is aimed to investigate the BRAF V600E and TERT promoter mutation profile of 50 pediatric papillary thyroid carcinomas (PTCs) to refine their clinicopathological correlates. The median age at the time of surgery was 16 years (range, 6–18). No TERT promoter mutations were identified in this series. The BRAF V600E mutation was present in 15 (30 %) tumors. From genotype-histologic variant correlation perspective, 13 of 24 classic variant PTCs and 2 of 7 diffuse sclerosing variant PTCs were found to harbor BRAF V600E mutation. One cribriform-morular variant, 3 solid variant, and 15 follicular variant PTCs were BRAF wild type. While tumors with distant metastasis were BRAF wild type, two of five tumors with extrathyroidal extension (ETE) harbored BRAF V600E mutation. Nine of 15 BRAF V600E harboring tumors had central lymph node metastases. There was no significant correlation with BRAF V600E mutation and age, gender, tumor size, ETE, central lymph node metastasis, the status of pT, pN1a-b, and distant metastasis. An adverse correlation between BRAF V600E mutation and disease-free survival (DFS) was noted in the entire cohort; however, the predictive value of BRAF V600E mutation disappeared within the group of tumors displaying classic architecture as well as classic variant PTCs. The present cohort identifies that the classic architecture with multicentricity and local recurrence are correlates of BRAF V600E harboring pediatric PTCs. While the small size of this cohort is one of the limitations, neither the BRAF mutation status nor the classic tumor architecture does seem to be an independent prognosticator of DFS in this series. Evidence also suggests that TERT promoter mutations do not seem to play a major role in the pathogenesis of pediatric PTCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. DeLellis RA, Lloyd RV, Heitz PU, Eng C, eds. World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of Endocrine Organs. Lyon: IARC Press, 2004.

    Google Scholar 

  2. Cordioli MI, Moraes L, Cury AN, Cerutti JM. Are we really at the dawn of understanding sporadic pediatric thyroid carcinoma? Endocr Relat Cancer 22: R311-324, 2015.

    Article  PubMed  Google Scholar 

  3. Kiratli PO, Volkan-Salanci B, Günay EC, Varan A, Akyüz C, Büyükpamukçu M. Thyroid cancer in pediatric age group: an institutional experience and review of the literature. J Pediatr Hematol Oncol 35: 93–97, 2013.

    Article  PubMed  Google Scholar 

  4. Siegel DA, King J, Tai E, Buchanan N, Ajani UA, Li J. Cancer incidence rates and trends among children and adolescents in the United States, 2001–2009. Pediatrics 134: E945-955, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cancer Genome Atlas Research Network. Integrated Genomic Characterization of Papillary Thyroid Carcinoma. Cell 159: 676–690, 2014.

  6. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, Pacini F, Randolph GW, Sawka AM, Schlumberger M, Schuff KG, Sherman SI, Sosa JA, Steward DL, Tuttle RM, Wartofsky L. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 26: 1–133, 2016.

    Article  PubMed  Google Scholar 

  7. Jarzab B, Handkiewicz-Junak D. Differentiated thyroid cancer in children and adults: same or distinct disease? Hormones 6: 200–209, 2007.

    PubMed  Google Scholar 

  8. Francis G, Waguespack SG, Bauer AJ, Angelos P, Benvenga S, Cerutti J, Dinauer CA, Hamilton JK, Hay ID, Luster M, Parisi MT, Rachmiel M, Thompson GB, Yamashita S; American Thyroid Association Guidelines Task Force. Management guidelines for children with thyroid nodules and differentiated thyroid cancer The American Thyroid Association Guidelines Task Force on Pediatric Thyroid Cancer. Thyroid 25:716–759, 2015.

    Article  PubMed  Google Scholar 

  9. Tracy ET, Roman SA. Current management of pediatric thyroid disease and differentiated thyroid cancer. Curr Opin Oncol 28: 37–42, 2016.

    Article  CAS  PubMed  Google Scholar 

  10. Hay ID, Gonzalez-Losada T, Reinalda MS, Honetschlager JA, Richards ML, Thompson GB. Long-term outcome in 215 children and adolescents with papillary thyroid cancer treated during 1940 through 2008. World J Surg 34: 1192–1202, 2010.

    Article  PubMed  Google Scholar 

  11. Ballester LY, Sarabia SF, Sayeed H, Patel N, Baalwa J, Athanassaki I, Hernandez JA, Fang E, Quintanilla NM, Roy A, López-Terrada DH. Integrating Molecular Testing in the Diagnosis and Management of Children with Thyroid Lesions. Pediatr Dev Pathol. 2015

  12. Ngeow J, Eng C. TERT and BRAF in thyroid cancer: teaming up for trouble. J Clin Oncol 32: 2683–2684, 2014.

    Article  PubMed  Google Scholar 

  13. Xing M, Liu R, Liu X, Murugan AK, Zhu G, Zeiger MA, Pai S, Bishop J. BRAF V600E and TERT promoter mutations cooperatively identify the most aggressive papillary thyroid cancer with highest recurrence. J Clin Oncol 32: 2718–2726, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tavares C, Melo M, Cameselle Teijeiro JM, Soares P, Sobrinho-Simoes M. Genetic predictors of thyroid cancer outcome. Eur J Endocrinol. 2015.

  15. Melo M, da Rocha AG, Vinagre J, Sobrinho-Simões M, Soares P. Coexistence of TERT promoter and BRAF mutations in papillary thyroid carcinoma: added value in patient prognosis? J Clin Oncol 33: 667–668, 2015.

    Article  PubMed  Google Scholar 

  16. Henke LE, Perkins SM, Pfeifer JD, Ma C, Chen Y, DeWees T, Grigsby PW. BRAF V600E mutational status in pediatric thyroid cancer. Pediatr Blood Cancer 61: 1168–1172, 2014.

    Article  CAS  PubMed  Google Scholar 

  17. Kim TH, Park YJ, Lim JA, Ahn HY, Lee EK, Lee YJ, Kim KW, Hahn SK, Youn YK, Kim KH, Cho BY, Park do J. The association of the BRAF(V600E) mutation with prognostic factors and poor clinical outcome in papillary thyroid cancer: a meta-analysis. Cancer 118: 1764–1773, 2012.

    Article  CAS  PubMed  Google Scholar 

  18. Xing M. Prognostic utility of BRAF mutation in papillary thyroid cancer. Mol Cell Endocrinol 32: 86–93, 2010.

    Article  Google Scholar 

  19. Kwak JY, Kim EK, Chung WY, Moon HJ, Kim MJ, Choi JR. Association of BRAFV600E mutation with poor clinical prognostic factors and US features in Korean patients with papillary thyroid microcarcinoma. Radiology 253: 854–860, 2009.

    Article  PubMed  Google Scholar 

  20. Howell GM, Carty SE, Armstrong MJ, Lebeau SO, Hodak SP, Coyne C, Stang MT, McCoy KL, Nikiforova MN, Nikiforov YE, Yip L. Both BRAF V600E mutation and older age (≥65 years) are associated with recurrent papillary thyroid cancer. Ann Surg Oncol 18: 3566–3571, 2011.

    Article  PubMed  Google Scholar 

  21. Liu X, Bishop J, Shan Y, Pai S, Lui D, Murugan AK, Sun H, El-Naggar AK& Xing M. Highly prevalent TERT promoter mutations in aggressive thyroid cancers. Endocr Relat Cancer 20: 603–610, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Vinagre J, Almeida A, Pópulo H, Batista R, Lyra J, Pinto V, Coelho R, Celestino R, Prazeres H, Lima L, Melo M, da Rocha AG, Preto A, Castro P, Castro L, Pardal F, Lopes JM, Santos LL, Reis RM, Cameselle-Teijeiro J, Sobrinho-Simões M, Lima J, Máximo V, Soares P. Frequency of TERT promoter mutations in human cancers. Nat Commun 4: 2185, 2013.

    Article  PubMed  Google Scholar 

  23. Liu T, Wang N, Cao J, Sofiadis A, Dinets A, Zedenius J, Larsson C, Xu D. The age- and shorter telomere-dependent TERT promoter mutation in follicular thyroid cell-derived carcinomas. Oncogene 33: 4978–4984, 2014.

    Article  CAS  PubMed  Google Scholar 

  24. Melo M, da Rocha AG, Vinagre J, Batista R, Peixoto J, Tavares C, Celestino R, Almeida A, Salgado C, Eloy C, Castro P, Prazeres H, Lima J, Amaro T, Lobo C, Martins MJ, Moura M, Cavaco B, Leite V, Cameselle-Teijeiro JM, Carrilho F, Carvalheiro M, Maximo V, Sobrinho-Simoes M, Soares P. TERT promoter mutations are a major indicator of poor outcome in differentiated thyroid carcinomas. J Clin Endocrinol Metab 99: E754-765, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu X, Qu S, Liu R, Sheng C, Shi X, Zhu G, Murugan AK, Guan H, Yu H, Wang Y, Sun H, Shan Z, Teng W, Xing M. TERT promoter mutations and their association with BRAF V600E mutation and aggressive clinicopathological characteristics of thyroid cancer. J Clin Endocrinol Metab 99: E1130-1136, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Soares P, Celestino R, Melo M, Fonseca E, Sobrinho-Simões M. Prognostic biomarkers in thyroid cancer. Virchows Arch 464: 333–346, 2014.

    Article  CAS  PubMed  Google Scholar 

  27. Givens DJ, Buchmann LO, Agarwal AM, Grimmer JF, Hunt JP. BRAF V600E does not predict aggressive features of pediatric papillary thyroid carcinoma. Laryngoscope 124: E389–393, 2014.

    Article  CAS  PubMed  Google Scholar 

  28. Prasad ML, Vyas M, Horne MJ, Virk RK, Morotti R, Liu Z, Tallini G, Nikiforova MN, Christison-Lagay ER, Udelsman R, Dinauer CA, Nikiforov YE. NTRK fusion oncogenes in pediatric papillary thyroid carcinoma in northeast United States. Cancer. 2016 Jan 19.

  29. Alzahrani AS, Qasem E, Murugan AK, Al-Hindi HN, AlKhafaji D, Almohanna M, Xing M, Alhomaidah D, AlSwailem M. Uncommon TERT Promoter Mutations in Pediatric Thyroid Cancer. Thyroid. 2016 Jan 21.

  30. Nikita ME, Jiang W, Cheng SM, Hantash FM, McPhaul MJ, Newbury RO, Phillips SA, Reitz RE, Waldman FM, Newfield RS. Mutational Analysis in Pediatric Thyroid Cancer and Correlations with Age, Ethnicity, and Clinical Presentation. Thyroid. 2016 Jan 7.

  31. Penko K, Livezey J, Fenton C, Patel A, Nicholson D, Flora M, Oakley K, Tuttle RM, Francis G. BRAF mutations are uncommon in papillary thyroid cancer of young patients. Thyroid 15(4): 320–325, 2005.

    Article  CAS  PubMed  Google Scholar 

  32. Rosenbaum E, Hosler G, Zahurak M, Cohen Y, Sidransky D, Westra WH. Mutational activation of BRAF is not a major event in sporadic childhood papillary thyroid carcinoma. Mod Pathol 18: 898–902, 2005.

    Article  CAS  PubMed  Google Scholar 

  33. Yamashita S, Saenko V. Mechanisms of Disease: molecular genetics of childhood thyroid cancers. Nat Clin Pract Endocrinol Metab 3: 422–499, 2007.

    Article  CAS  PubMed  Google Scholar 

  34. Al-Qahtani KH, Tunio MA, Al Asiri M, Aljohani NJ, Bayoumi Y, Riaz K, AlShakweer W. Clinicopathological features and treatment outcomes of differentiated thyroid cancer in Saudi children and adults. J Otolaryngol Head Neck Surg 44:48, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Silva-Vieira M, Santos R, Leite V, Limbert E. Review of clinical and pathological features of 93 cases of well-differentiated thyroid carcinoma in pediatric age at the Lisbon Centre of the Portuguese Institute of Oncology between 1964 and 2006. Int J Pediatr Otorhinolaryngol 79: 1324–1349, 2015.

    Article  PubMed  Google Scholar 

  36. Lee YA, Jung HW, Kim HY, Choi H, Kim HY, Hah JH, Park do J, Chung JK, Yang SW, Shin CH, Park YJ. Pediatric patients with multifocal papillary thyroid cancer have higher recurrence rates than adult patients: a retrospective analysis of a large pediatric thyroid cancer cohort over 33 years. J Clin Endocrinol Metab 100: 1619–1629, 2015.

    Article  CAS  PubMed  Google Scholar 

  37. Lerner J, Goldfarb M. Follicular variant papillary thyroid carcinoma in a pediatric population. Pediatr Blood Cancer 62: 1942–1946, 2015.

    Article  PubMed  Google Scholar 

  38. Joung JY, Kim TH, Jeong DJ, Park SM, Cho YY, Jang HW, Jung YY, Oh YL, Yim HS, Kim YL, Chung JH, Ki CS, Kim SW. Diffuse sclerosing variant of papillary thyroid carcinoma: Major genetic alterations and prognostic implications. Histopathology. 2015 Nov 14.

  39. Chou A, Fraser S, Toon CW, Clarkson A, Sioson L, Farzin M, Cussigh C, Aniss A, O’Neill C, Watson N, Clifton-Bligh RJ, Learoyd DL, Robinson BG, Selinger CI, Delbridge LW, Sidhu SB, O’Toole SA, Sywak M, Gill AJ. A detailed clinicopathologic study of ALK-translocated papillary thyroid carcinoma. Am J Surg Pathol 39: 652–659, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Yasemin Ozluk (Istanbul University, Istanbul Faculty of Medicine, Department of Pathology) for her invaluable assistance in the statistical analyses.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Semen Onder or Ozgur Mete.

Ethics declarations

Conflict of Interest

All authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Onder, S., Ozturk Sari, S., Yegen, G. et al. Classic Architecture with Multicentricity and Local Recurrence, and Absence of TERT Promoter Mutations are Correlates of BRAF V600E Harboring Pediatric Papillary Thyroid Carcinomas. Endocr Pathol 27, 153–161 (2016). https://doi.org/10.1007/s12022-016-9420-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12022-016-9420-0

Keywords

Navigation