Skip to main content
Log in

Adaptive Smoothing as Inference Strategy

More Specificity for Unequally Sized or Neighbouring Regions

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

Although spatial smoothing of fMRI data can serve multiple purposes, increasing the sensitivity of activation detection is probably its greatest benefit. However, this increased detection power comes with a loss of specificity when non-adaptive smoothing (i.e. the standard in most software packages) is used. Simulation studies and analysis of experimental data was performed using the R packages neuRosim and fmri. In these studies, we systematically investigated the effect of spatial smoothing on the power and number of false positives in two particular cases that are often encountered in fMRI research: (1) Single condition activation detection for regions that differ in size, and (2) multiple condition activation detection for neighbouring regions. Our results demonstrate that adaptive smoothing is superior in both cases because less false positives are introduced by the spatial smoothing process compared to standard Gaussian smoothing or FDR inference of unsmoothed data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. We explicitly discard cluster-based FDR methods (e.g. Chumbley and Friston 2009) because they are also dependent on RFT inference.

  2. The influence of spatial smoothing in this stage was minimized by setting the FWHM of the Gaussian smoothing kernel to 1 mm, before estimating the realignment parameters.

References

  • Adler, R. (2000). On excursion sets, tube formulae, and maxima of random fields (special invited paper). Annals of Applied Probability, 10, 1–74.

    Google Scholar 

  • Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B, 57, 289–300.

    Google Scholar 

  • Benjamini, Y., & Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics, 29, 1165–1188.

    Article  Google Scholar 

  • Carp, J. (2012). The secret lives of experiments: methods reporting in the fMRI literature. NeuroImage, 63, 289–300.

    Article  PubMed  Google Scholar 

  • Chumbley, J., & Friston, K. (2009). False discovery rate revisited: Fdr and topological inference using gaussian random fields. NeuroImage, 44, 62–70.

    Article  PubMed  Google Scholar 

  • Descombes, X., Kruggel, F., von Cramon, D. (1998). Spatio-temporal fMRI analysis using markov random fields. IEEE Transactions on Medical Imaging, 17, 1028–29.

    Article  PubMed  CAS  Google Scholar 

  • Dümbgen, L., & Spokoiny, V. (2001). Multiscale testing of qualitative hypotheses. Annals of Statistics, 29, 124–152.

    Article  Google Scholar 

  • Friston, K., Worsley, K., Frackowiak, R., Mazziotta, J., Evans, A. (1994). Assessing the significance of focal activations using their spatial extent. Human Brain Mapping, 1, 214–220.

    Article  Google Scholar 

  • Friston, K., Ashburner, J., Kiebel, S., Nichols, T., Penny, W. (2007). Statistical parametric mapping: The analysis of functional brain images. Massachussets: Academic Press.

    Google Scholar 

  • Harrison, L., Penny, W., Daunizeau, J., Friston, K. (2008). Diffusion-based spatial priors for functional magnetic resonance images. NeuroImage, 41, 408–423.

    Article  PubMed  CAS  Google Scholar 

  • Logan, B., & Rowe, D. (2004). An evaluation of thresholding techniques in fMRI analysis. NeuroImage, 22, 95–108.

    Article  PubMed  Google Scholar 

  • Lu, Y., Jiang, T., Zang, Y. (2003). Region growing method for the analysis of functional mri data. NeuroImage, 20, 455–465.

    Article  PubMed  Google Scholar 

  • Poldrack, R., Mumford, J., Nichols, T. (2011). Handbook of functional MRI data analysis. New York: Cambridge University Press.

    Book  Google Scholar 

  • Poline, J., & Mazoyer, B. (1994). Enhanced detection in brain activation maps using a multifiltering approach. Journal of Cerebral Blood Flow Metabolism, 14, 639–642.

    Article  PubMed  CAS  Google Scholar 

  • Polzehl, J., & Spokoiny, V. (2006). Propagation-separation approach for local likelihood estimation. Probability Theory and Relative Fields, 135, 335–362.

    Article  Google Scholar 

  • Polzehl, J., Voss, H., Tabelow, K. (2010). Structural adaptive segmentation for statistical parametric mapping. NeuroImage, 52, 515–523.

    Article  PubMed  Google Scholar 

  • R Development Core Team (2010). R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, http://www.R-project.org, ISBN 3-900051-07-0.

  • Rosenfeld, A., & Kak, A. (1982). Digital picture processing 2. Orlando: Academic Press.

    Google Scholar 

  • Seurinck, R., de Lange, F., Achten, E., Vingerhoets, G. (2011). Mental rotation meets the motion aftereffect: the role of hV5/MT+ in visual mental imagery. Journal of Cognitive Neuroscience, 23, 1395–1404.

    Article  PubMed  Google Scholar 

  • Tabelow, K., & Polzehl, J. (2011). Statistical parametric maps for functional MRI experiments in r: the package fmri. Journal of Statistical Software, 44, 1–21.

    Google Scholar 

  • Tabelow, K., Polzehl, J., Voss, H., Spokoiny, V. (2006). Analyzing fMRI experiments with structural adaptive smoothing procedures. NeuroImage, 33, 55–62.

    Article  PubMed  Google Scholar 

  • Welvaert, M., & Rosseel, Y. (2012). How ignoring physiological noise can bias the conclusions from fMRI simulation studies. Journal of Neuroscience Methods, 211, 125–132.

    Article  PubMed  CAS  Google Scholar 

  • Welvaert, M., Durnez, J., Moerkerke, B., Verdoolaege, G., Rosseel, Y. (2011). neuRosim: an R package for generating fMRI data. Journal of Statistical Software, 44, 1–18.

    Google Scholar 

  • Worsley, K. (1994). Local maxima and the expected euler characteristic of excursion sets of χ 2, f and t fields. Advances in Applied Probability, 26, 13–42.

    Article  Google Scholar 

  • Worsley, K. (2003). Detecting activation in fmri data. Statistical Methods in Medical Research, 12, 401–418.

    Article  PubMed  CAS  Google Scholar 

  • Yue, Y., Loh, J., Lindquist, M. (2010). Adaptive spatial smoothing of fmri images. Statistics and Its Interface, 3, 3–13.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marijke Welvaert.

Additional information

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Welvaert, M., Tabelow, K., Seurinck, R. et al. Adaptive Smoothing as Inference Strategy. Neuroinform 11, 435–445 (2013). https://doi.org/10.1007/s12021-013-9196-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-013-9196-z

Keywords

Navigation