Skip to main content

Advertisement

Log in

Cell proliferation, apoptosis, and angiogenesis in non-functional pituitary adenoma: association with tumor invasiveness

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

Non-functioning pituitary adenoma (NFPA) is the most prevalent pituitary macroadenoma. No prognostic marker has been found to explain the behavior of these tumors. We aimed to explore cell proliferation, apoptosis, proangiogenic markers, and microvascular density (MVD) in noninvasive and invasive NFPAs.

Methods

Adenoma invasiveness was defined according to Knosp and Hardy classifications based on preoperative magnetic resonance imaging scans. Cell proliferation was examined using Ki67 and P53. Tissue expression of Bcl-2 was used to assess the antiapoptosis pathway. CD34 and CD105 were measured to evaluate MVD, while VEGF expression was assessed as an indicator of pro-angiogenesis. Moreover, VEGF, bFGF, endocan, and endostatin were measured on preoperative serum samples.

Results

Tissue and serum markers were examined in 18 patients with invasive and 21 patients with noninvasive NFPAs. Ki67 less than 3% was reported in 10 invasive and 14 noninvasive NFPAs (P = 0.752). P53 staining was negative in all subjects. In addition, Bcl-2 staining was negative in 15 and 20 subjects, respectively (P = 0.718). VEGF-A expression 2+ or 3+ was reported in 9 invasive and 11 noninvasive macroadenomas (P = 0.83). Moreover, CD34 and CD105 positivity were comparable between the two groups. Furthermore, the comparison of serum markers showed no significant differences.

Conclusion

Cell proliferation, apoptosis, and angiogenesis play a limited role in NFPA behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. M. Mercado, V. Melgar, L. Salame, D. Cuenca, Clinically non-functioning pituitary adenomas: pathogenic, diagnostic and therapeutic aspects. Endocrinologia, diabetes y nutricion 64(7), 384–395 (2017)

    PubMed  Google Scholar 

  2. M.M. Fernández-Balsells, M.H. Murad, A. Barwise, J.F. Gallegos-Orozco, A. Paul, M.A. Lane, J.F. Lampropulos, I. Natividad, L. Perestelo-Perez, P.G. Ponce de Leon-Lovaton, Natural history of nonfunctioning pituitary adenomas and incidentalomas: a systematic review and metaanalysis. J. Clin. Endocrinol. Metabol. 96(4), 905–912 (2011)

    Google Scholar 

  3. Y. Miao, M. Zong, T. Jiang, X. Yuan, S. Guan, Y. Wang, D. Zhou, A comparative analysis of ESM-1 and vascular endothelial cell marker (CD34/CD105) expression on pituitary adenoma invasion. Pituitary 19(2), 194–201 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  4. M.E. Molitch, Diagnosis and treatment of pituitary adenomas: a review. JAMA 317(5), 516–524 (2017)

    PubMed  Google Scholar 

  5. G. Ntali, J.A. Wass, Epidemiology, clinical presentation and diagnosis of non-functioning pituitary adenomas. Pituitary 21(2), 111–118 (2018)

    PubMed  Google Scholar 

  6. A. Fernandez, N. Karavitaki, J.A. Wass, Prevalence of pituitary adenomas: a community‐based, cross‐sectional study in Banbury (Oxfordshire, UK). Clin. Endocrinol. 72(3), 377–382 (2010)

    Google Scholar 

  7. M. Sato, R. Tamura, H. Tamura, T. Mase, K. Kosugi, Y. Morimoto, K. Yoshida, M. Toda, Analysis of tumor angiogenesis and immune microenvironment in non-functional pituitary endocrine tumors. J. Clin. Med. 8(5), 695 (2019)

    CAS  PubMed Central  Google Scholar 

  8. H. Turner, Z. Nagy, K. Gatter, M. Esiri, J. Wass, A. Harris, Proliferation, bcl-2 expression and angiogenesis in pituitary adenomas: relationship to tumour behaviour. Br. J. Cancer 82(8), 1441–1445 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  9. T.-W. Noh, H.J. Jeong, M.-K. Lee, T.S. Kim, S.H. Kim, E.J. Lee, Predicting recurrence of nonfunctioning pituitary adenomas. J. Clin. Endocrinol. Metab. 94(11), 4406–4413 (2009)

    CAS  PubMed  Google Scholar 

  10. A. Di Ieva, A. Weckman, J. Di Michele, F. Rotondo, F. Grizzi, K. Kovacs, M.D. Cusimano, Microvascular morphometrics of the hypophysis and pituitary tumors: from bench to operating theatre. Microvasc. Res. 89, 7–14 (2013)

    PubMed  Google Scholar 

  11. C. Cristina, G.M. Luque, G. Demarchi, F.L. Vicchi, L. Zubeldia-Brenner, M.I.P. Millan, S. Perrone, A.M. Ornstein, I.M. Lacau-Mengido, S.I. Berner, D. Becu-Villalobos, Angiogenesis in pituitary adenomas: human studies and new mutant mouse models. Int. J. Endocrinol. 2014, 1–11 (2014)

    Google Scholar 

  12. M. Niveiro, F.I. Aranda, G. Peiró, C. Alenda, A. Picó, Immunohistochemical analysis of tumor angiogenic factors in human pituitary adenomas. Hum. Pathol. 36(10), 1090–1095 (2005)

    CAS  PubMed  Google Scholar 

  13. A. Cornelius, C. Cortet‐Rudelli, R. Assaker, O. Kerdraon, M.H. Gevaert, V. Prévot, P. Lassalle, J. Trouillas, M. Delehedde, C.A. Maurage, Endothelial expression of endocan is strongly associated with tumor progression in pituitary adenoma. Brain Pathol. 22(6), 757–764 (2012)

    CAS  PubMed  Google Scholar 

  14. C. Cristina, M.I. Perez-Millan, G. Luque, R.A. Dulce, G. Sevlever, S.I. Berner, D. Becu-Villalobos, VEGF and CD31 association in pituitary adenomas. Endocr. Pathol. 21(3), 154–160 (2010)

    CAS  PubMed  Google Scholar 

  15. K.-M. Lee, S.-H. Park, K.-S. Park, J.-H. Hwang, S.-K. Hwang, Analysis of circulating endostatin and vascular endothelial growth factor in patients with pituitary adenoma treated by stereotactic radiosurgery: a preliminary study. Brain Tumor Res. Treat. 3(2), 89–94 (2015)

    PubMed  PubMed Central  Google Scholar 

  16. F. Grimm, R. Maurus, R. Beschorner, G. Naros, M. Stanojevic, I. Gugel, S. Giese, G. Bier, B. Bender, J. Honegger, Ki-67 labeling index and expression of p53 are non-predictive for invasiveness and tumor size in functional and nonfunctional pituitary adenomas. Acta Neurochirurgica 161(6), 1149–1156 (2019)

    PubMed  Google Scholar 

  17. O. Mete, M.B. Lopes, Overview of the 2017 WHO classification of pituitary tumors. Endocr. Pathol. 28(3), 228–243 (2017)

    CAS  PubMed  Google Scholar 

  18. N. Weidner, J.P. Semple, W.R. Welch, J. Folkman, Tumor angiogenesis and metastasis—correlation in invasive breast carcinoma. New Engl. J. Med. 324(1), 1–8 (1991)

    CAS  PubMed  Google Scholar 

  19. I.-M. Moldovan, S. Şuşman, R. Pirlog, E.M. Jianu, D.C. Leucuţa, C.S. Melincovici, D. Crişan, I.Ş. Florian, Molecular markers in the diagnosis of invasive pituitary adenomas–an immunohistochemistry study. Rom. J. Morphol. Embryol. 58(4), 1357–1364 (2017)

    PubMed  Google Scholar 

  20. E. Knosp, E. Steiner, K. Kitz, C. Matula, Pituitary adenomas with invasion of the cavernous sinus space: a magnetic resonance imaging classification compared with surgical findings. Neurosurgery. 33(4), 610–618 (1993)

    CAS  PubMed  Google Scholar 

  21. J. Hardy, Transphenoidal microsurgical treatment of pituitary. In: J.A. Linfoot (ed.) Recent advances in the diagnosis and treatment of pituitary tumors. (Raven press, New York, 1979), pp. 375–378

  22. K. Kovacs, Tumors of the pituitary gland. Atlas Tumor Pathol Fascicle 21, 1–269 (1986). 2nd series

    Google Scholar 

  23. B.M. Davies, E. Carr, C. Soh, K.K. Gnanalingham, Assessing size of pituitary adenomas: a comparison of qualitative and quantitative methods on MR. Acta Neurochirurgica 158(4), 677–683 (2016)

    PubMed  PubMed Central  Google Scholar 

  24. G. Raverot, P. Burman, A. McCormack, A. Heaney, S. Petersenn, V. Popovic, J. Trouillas, O.M. Dekkers, European Society of Endocrinology Clinical Practice Guidelines for the management of aggressive pituitary tumours and carcinomas. Eur. J. Endocrinol. 178(1), G1–G24 (2018)

    CAS  PubMed  Google Scholar 

  25. J. Trouillas, P. Roy, N. Sturm, E. Dantony, C. Cortet-Rudelli, G. Viennet, J.-F. Bonneville, R. Assaker, C. Auger, T. Brue, A new prognostic clinicopathological classification of pituitary adenomas: a multicentric case–control study of 410 patients with 8 years post-operative follow-up. Acta Neuropathol. 126(1), 123–135 (2013)

    PubMed  Google Scholar 

  26. Glebauskiene, B., Liutkeviciene, R., Vilkeviciute, A., Gudinaviciene, I., Rocyte, A., Simonaviciute, D., Mazetyte, R., Kriauciuniene, L., Zaliuniene, D. Association of Ki-67 labelling index and IL-17A with pituitary adenoma. BioMed Res. Int. 2018, https://doi.org/10.1155/2018/7490585 (2018)

  27. R. Hasanov, B.İ. Aydoğan, S. Kiremitçi, E. Erden, S. Güllü, The prognostic roles of the Ki-67 proliferation index, P53 expression, mitotic index, and radiological tumor invasion in pituitary adenomas. Endocr. Pathol. 30(1), 49–55 (2019)

    CAS  PubMed  Google Scholar 

  28. K. Thapar, K. Kovacs, B.W. Scheithauer, L. Stefaneanu, E. Horvath, J. Peter, P., D. Murray, E.R. Laws Jr, Proliferative activity and invasiveness among pituitary adenomas and carcinomas: an analysis using the MIB-1 antibody. Neurosurgery 38(1), 99–107 (1996)

    CAS  PubMed  Google Scholar 

  29. L. Mastronardi, A. Guiducci, C. Spera, F. Puzzilli, F. Liberati, G. Maira, Ki-67 labelling index and invasiveness among anterior pituitary adenomas: analysis of 103 cases using the MIB-1 monoclonal antibody. J. Clin. Pathol. 52(2), 107–111 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  30. A.M. Landolt, T. Shibata, P. Kleihues, Growth rate of human pituitary adenomas. J. Neurosurg. 67(6), 803–806 (1987)

    CAS  PubMed  Google Scholar 

  31. C.P. Miermeister, S. Petersenn, M. Buchfelder, R. Fahlbusch, D.K. Lüdecke, A. Hölsken, M. Bergmann, H.U. Knappe, V.H. Hans, J. Flitsch, Histological criteria for atypical pituitary adenomas–data from the German pituitary adenoma registry suggests modifications. Acta Neuropathologica Commun. 3(1), 50 (2015)

    Google Scholar 

  32. R. Gejman, B. Swearingen, E.T. Hedley-Whyte, Role of Ki-67 proliferation index and p53 expression in predicting progression of pituitary adenomas. Hum. Pathol. 39(5), 758–766 (2008)

    CAS  PubMed  Google Scholar 

  33. S. Ding, C. Li, S. Lin, Y. Yang, D. Liu, Y. Han, Y. Zhang, L. Li, L. Zhou, S. Kumar, Comparative evaluation of microvessel density determined by CD34 or CD105 in benign and malignant gastric lesions. Hum. Pathol. 37(7), 861–866 (2006)

    CAS  PubMed  Google Scholar 

  34. F. Rotondo, S. Sharma, B. Scheithauer, E. Horvath, L. Syro, M. Cusimano, F. Nassiri, G. Yousef, K. Kovacs, Endoglin and CD-34 immunoreactivity in the assessment of microvessel density in normal pituitary and adenoma subtypes. Neoplasma 57(6), 590 (2010)

    CAS  PubMed  Google Scholar 

  35. S. Vidal, K. Kovacs, E. Horvath, B.W. Scheithauer, T. Kuroki, R.V. Lloyd, Microvessel density in pituitary adenomas and carcinomas. Virchows Arch. 438(6), 595–602 (2001)

    CAS  PubMed  Google Scholar 

  36. C.B. Pizarro, M.C. Oliveira, J.F. Pereira‐Lima, C.G. Leães, C.K. Kramer, T. Schuch, L.M. Barbosa‐Coutinho, N.P. Ferreira, Evaluation of angiogenesis in 77 pituitary adenomas using endoglin as a marker. Neuropathology 29(1), 40–44 (2009)

    PubMed  Google Scholar 

  37. R.V. Lloyd, S. Vidal, E. Horvath, K. Kovacs, B. Scheithauer, Angiogenesis in normal and neoplastic pituitary tissues. Microscopy Res. Tech. 60(2), 244–250 (2003)

    CAS  Google Scholar 

  38. K. Takada, S. Yamada, A. Teramoto, Correlation between tumor vascularity and clinical findings in patients with pituitary adenomas. Endocr. Pathol. 15(2), 131–139 (2004)

    PubMed  Google Scholar 

  39. M. Raica, M. Coculescu, A.M. Cimpean, D. Ribatti, Endocrine gland derived-VEGF is down-regulated in human pituitary adenoma. Anticancer Res. 30(10), 3981–3986 (2010)

    PubMed  Google Scholar 

  40. R.V. Lloyd, B.W. Scheithauer, T. Kuroki, S. Vidal, K. Kovacs, L. Stefaneanu, Vascular endothelial growth factor (VEGF) expression in human pituitary adenomas and carcinomas. Endocr. Pathol. 10(3), 229–235 (1999)

    CAS  PubMed  Google Scholar 

  41. J.M. Walz, D. Boehringer, H.L. Deissler, L. Faerber, J.C. Goepfert, P. Heiduschka, S.M. Kleeberger, A. Klettner, T.U. Krohne, N. Schneiderhan-Marra, Pre-analytical parameters affecting vascular endothelial growth factor measurement in plasma: identifying confounders. PLoS One 11(1), e0145375 (2016)

    PubMed  PubMed Central  Google Scholar 

  42. R. Sánchez-Ortiga, L. Sánchez-Tejada, O. Moreno-Perez, P. Riesgo, M. Niveiro, A.M.P. Alfonso, Over-expression of vascular endothelial growth factor in pituitary adenomas is associated with extrasellar growth and recurrence. Pituitary 16(3), 370–377 (2013)

    PubMed  Google Scholar 

  43. H.E. Turner, J.A. Wass, Are markers of proliferation valuable in the histological assessment of pituitary tumours? Pituitary 1(3-4), 147–151 (1999)

    CAS  PubMed  Google Scholar 

  44. S. Borg, K. Kerry, J. Royds, R. Battersby, T. Jones, Correlation of VEGF production with IL1α and IL6 secretion by human pituitary adenoma cells. Eur. J. Endocrinol. 152(2), 293–300 (2005)

    CAS  PubMed  Google Scholar 

  45. T. Iuchi, N. Saeki, K. Osato, A. Yamaura, Proliferation, vascular endothelial growth factor expression and cavernous sinus invasion in growth hormone secreting pituitary adenomas. Acta Neurochirurgica 142(12), 1345–1351 (2000)

    CAS  PubMed  Google Scholar 

  46. P. Lohrer, J. Gloddek, U. Hopfner, M. Losa, E. Uhl, U. Pagotto, G.K. Stalla, U. Renner, Vascular endothelial growth factor production and regulation in rodent and human pituitary tumor cells in vitro. Neuroendocrinology 74(2), 95–105 (2001)

    CAS  PubMed  Google Scholar 

  47. N. Li, Z. Jiang, Relationship between expression of vascular endothelial growth factor and the proliferation of prolactinomas. Clin. Neurol. Neurosurg. 153, 102–106 (2017)

    PubMed  Google Scholar 

  48. S. Fukui, H. Nawashiro, N. Otani, H. Ooigawa, A. Yano, N. Nomura, A.M. Tokumaru, T. Miyazawa, A. Ohnuki, N. Tsuzuki, H. Katoh, S. Ishihara, K. Shima, Vascular endothelial growth factor expression in pituitary adenomas. Acta. Neurochir. Suppl. 86, 519–521 (2003)

    CAS  PubMed  Google Scholar 

  49. Y. Kong, Z. Ren, C. Su, R. Wang, B. Xing, Expressive level of vascular endothelial growth factor in peripheral blood in patients with pituitary adenomas. Zhongguo yi xue ke xue yuan xue bao. Acta Academiae Medicinae Sinicae 26(2), 164–167 (2004)

    CAS  PubMed  Google Scholar 

  50. W. He, L. Huang, X. Shen, Y. Yang, D. Wang, Y. Yang, X. Zhu, Relationship between RSUME and HIF-1α/VEGF-A with invasion of pituitary adenoma. Gene 603, 54–60 (2017)

    CAS  PubMed  Google Scholar 

  51. L.-x Pan, Z.-p Chen, Y.-s Liu, J.-h Zhao, Magnetic resonance imaging and biological markers in pituitary adenomas with invasion of the cavernous sinus space. J. Neuro-oncol. 74(1), 71–76 (2005)

    Google Scholar 

  52. A. Sav, F. Rotondo, L.V. Syro, B.W. Scheithauer, K. Kovacs, Biomarkers of pituitary neoplasms. Anticancer Res. 32(11), 4639–4654 (2012)

    CAS  PubMed  Google Scholar 

  53. S. Schreiber, W. Saeger, D.K. Lüdecke, Proliferation markers in different types of clinically non-secreting pituitary adenomas. Pituitary 1(3-4), 213–220 (1999)

    CAS  PubMed  Google Scholar 

  54. V. Sergio, H. Eva, K. Kalman, W. Bernd, R. Scheithauer, V. Llyod, K. George, Ultrastructural features of apoptosis in human pituitary adenomas. Ultrastructural Pathol. 25(2), 85–92 (2001)

    Google Scholar 

  55. F. Matano, D. Yoshida, Y. Ishii, S. Tahara, A. Teramoto, A. Morita, Endocan, a new invasion and angiogenesis marker of pituitary adenomas. J. Neuro-oncol. 117(3), 485–491 (2014)

    CAS  Google Scholar 

  56. B.D. Grigoriu, F. Depontieu, A. Scherpereel, D. Gourcerol, P. Devos, T. Ouatas, J.-J. Lafitte, M.-C. Copin, A.-B. Tonnel, P. Lassalle, Endocan expression and relationship with survival in human non–small cell lung cancer. Clin. Cancer Res. 12(15), 4575–4582 (2006)

    CAS  PubMed  Google Scholar 

  57. S. Wang, Z. Wu, L. Wei, J. Zhang, Endothelial cell-specific molecule-1 as an invasiveness marker for pituitary null cell adenoma. BMC Endocr. Disord. 19(1), 90 (2019)

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledged the patients participated in this study.

Author contributions

Conceptualization and methodology: M.E.K., M.G., and H.A.; Material preparation: M.G.; Investigation: M.P.-S., and A.Z.M.; Data collection: M.G., H.A., and M.G.; Writing—original draft preparation: M.G.; Writing—review and editing: M.E. K., B.J.-M., and M.H.

Funding

This study was funded by Iran University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad E. Khamseh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The current study was carried out according to Helsinki Declaration and was approved by the ethics committee of Iran University of Medical Sciences (IR.IUMS.FMD.REC1396.9511330003).

Informed consent

Verbal informed consent was obtained from the patients.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghadir, M., Khamseh, M.E., Panahi-shamsabad, M. et al. Cell proliferation, apoptosis, and angiogenesis in non-functional pituitary adenoma: association with tumor invasiveness. Endocrine 69, 596–603 (2020). https://doi.org/10.1007/s12020-020-02366-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-020-02366-6

Keywords

Navigation