Skip to main content

Advertisement

Log in

Exogenous FABP4 interferes with differentiation, promotes lipolysis and inflammation in adipocytes

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

Fatty acid binding protein 4 (FABP4) has been demonstrated to be secreted from adipocytes in an unconventional pathway associated with lipolysis. Circulating FABP4 is elevated in metabolic disorders and has been shown to affect various peripheral cells such as pancreatic β-cells, hepatocytes and macrophages, but its effects on adipocytes remains unclear. The aim of this study was to investigate the effects of exogenous FABP4 (eFABP4) on adipocyte differentiation and function.

Methods

3T3-L1 pre-adipocytes or mature adipocytes were treated with recombinant FABP4 in the absence or presence of FABP4 inhibitor I-9/p38 MAPK inhibitor SB203580; Meanwhile male C57BL/6J mice were subcutaneously injected twice a day with recombinant FABP4 (0.35 mg/kg) with or without I-9 (50 mg/kg) for 2 weeks. The effects of eFABP4 on differentiation, lipolysis and inflammation were determined by triglyceride measurement or lipolysis assay, western blotting, or RT-qPCR analysis.

Results

eFABP4 treatment significantly reduced intracellular triglyceride content and decreased expression of adipogenic markers peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT/enhancer binding protein alpha (C/EBPα), intracellular FABP4, and adiponectin in 3T3-L1 cells. Besides, eFABP4 promoted lipolysis and inflammation in differentiated 3T3-L1 adipocytes as well as in adipose tissue of eFABP4-treated C57BL/6J mice, with elevated gene expression of monocyte chemoattractant protein (MCP)-1, tumor necrosis factor (TNF)-α, and elevated protein expression of adipose triglyceride lipase (ATGL), phosphorylation of hormone-sensitive lipase (HSL) (Ser-660), p38, and nuclear factor-kappa B (NF-κB). The pro-inflammatory and pro-lipolytic effects of eFABP4 could be reversed by SB203580/I-9.

Conclusions

These findings indicate that eFABP4 interferes with adipocyte differentiation, induces p38/HSL mediated lipolysis and p38/NF-κB mediated inflammation in adipocytes in vitro and in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. P.E. Scherer, The multifaceted roles of adipose tissue-therapeutic targets for diabetes and beyond: the 2015 banting lecture. Diabetes 65(6), 1452–1461 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  2. A. Vegiopoulos, M. Rohm, S. Herzig, Adipose tissue: between the extremes. Embo J. 36(14), 1999–2017 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  3. S. Martin, Caveolae, lipid droplets, and adipose tissue biology: pathophysiological aspects. Horm. Mol. Biol. Clin. Investig. 15(1), 11–18 (2013)

    CAS  PubMed  Google Scholar 

  4. M. Lafontan, Adipose tissue and adipocyte dysregulation. Diabetes Metab. 40(1), 16–28 (2014)

    CAS  PubMed  Google Scholar 

  5. A. Hammarstedt, S. Gogg, S. Hedjazifar, A. Nerstedt, U. Smith, Impaired adipogenesis and dysfunctional adipose tissue in human hypertrophic obesity. Physiol. Rev. 98(4), 1911–1941 (2018)

    CAS  PubMed  Google Scholar 

  6. T.S. Nielsen, N. Jessen, J.O. Jorgensen, N. Moller, S. Lund, Dissecting adipose tissue lipolysis: molecular regulation and implications for metabolic disease. J. Mol. Endocrinol. 52(3), R199–R222 (2014)

    CAS  PubMed  Google Scholar 

  7. N. Wronkowitz, T. Romacho, H. Sell, J. Eckel, Adipose tissue dysfunction and inflammation in cardiovascular disease. Front. Horm. Res. 43, 79–92 (2014)

    PubMed  Google Scholar 

  8. B. Gustafson, S. Gogg, S. Hedjazifar, L. Jenndahl, A. Hammarstedt, U. Smith, Inflammation and impaired adipogenesis in hypertrophic obesity in man. Am. J. Physiol. Endocrinol. Metab. 297(5), E999–E1003 (2009)

    CAS  PubMed  Google Scholar 

  9. T. Suganami, M. Tanaka, Y. Ogawa, Adipose tissue inflammation and ectopic lipid accumulation. Endocr. J. 59(10), 849–857 (2012)

    CAS  PubMed  Google Scholar 

  10. R.G. Baker, M.S. Hayden, S. Ghosh, NF-kappaB, inflammation, and metabolic disease. Cell Metab. 13(1), 11–22 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  11. C. Sun, L. Wang, J. Yan, S. Liu, Calcium ameliorates obesity induced by high-fat diet and its potential correlation with p38 MAPK pathway. Mol. Biol. Rep. 39(2), 1755–1763 (2012)

    CAS  PubMed  Google Scholar 

  12. P.W. Mu, P. Jiang, M.M. Wang, Y.M. Chen, S.H. Zheng, Z. Tan, W. Jiang, L.Y. Zeng, T.H. Wang, Oestrogen exerts anti-inflammation via p38 MAPK/NF-kappaB cascade in adipocytes. Obes. Res. Clin. Pract. 10(6), 633–641 (2016)

    PubMed  Google Scholar 

  13. T.W. Jung, Y.H. Chung, H.C. Kim, A.M. Abd El-Aty, J.H. Jeong, LECT2 promotes inflammation and insulin resistance in adipocytes via P38 pathways. J. Mol. Endocrinol. 61(1), 37–45 (2018)

    CAS  PubMed  Google Scholar 

  14. A.E. Thumser, J.B. Moore, N.J. Plant, Fatty acid binding proteins: tissue-specific functions in health and disease. Curr. Opin. Clin. Nutr. Metab. Care 17(2), 124–129 (2014)

    CAS  PubMed  Google Scholar 

  15. M. Trojnar, J. Patro-Malysza, Z. Kimber-Trojnar, B. Leszczynska-Gorzelak, J. Mosiewicz, Associations between fatty acid-binding protein 4(-)A proinflammatory adipokine and insulin resistance, gestational and type 2 diabetes mellitus, Cells 8(3), 227 (2019).

    CAS  PubMed Central  Google Scholar 

  16. L. Scheja, L. Makowski, K.T. Uysal, S.M. Wiesbrock, D.R. Shimshek, D.S. Meyers, M. Morgan, R.A. Parker, G.S. Hotamisligil, Altered insulin secretion associated with reduced lipolytic efficiency in aP2(−/−) mice. Diabetes 48(10), 1987–1994 (1999)

    CAS  Google Scholar 

  17. R.A. Baar, C.S. Dingfelder, L.A. Smith, D.A. Bernlohr, C. Wu, A.J. Lange, E.J. Parks, Investigation of in vivo fatty acid metabolism in AFABP/aP2(−/−) mice. Am. J. Physiol. Endocrinol. Metab. 288(1), E187–E193 (2005)

    CAS  PubMed  Google Scholar 

  18. W.J. Shen, K. Sridhar, D.A. Bernlohr, F.B. Kraemer, Interaction of rat hormone-sensitive lipase with adipocyte lipid-binding protein. Proc. Natl Acad. Sci. USA 96(10), 5528–5532 (1999)

    CAS  PubMed  Google Scholar 

  19. T. Garin-Shkolnik, A. Rudich, G.S. Hotamisligil, M. Rubinstein, FABP4 attenuates PPARgamma and adipogenesis and is inversely correlated with PPARgamma in adipose tissues. Diabetes 63(3), 900–911 (2014)

    CAS  PubMed  Google Scholar 

  20. M. Furuhashi, G. Tuncman, C.Z. Gorgun, L. Makowski, G. Atsumi, E. Vaillancourt, K. Kono, V.R. Babaev, S. Fazio, M.F. Linton, R. Sulsky, J.A. Robl, R.A. Parker, G.S. Hotamisligil, Treatment of diabetes and atherosclerosis by inhibiting fatty-acid-binding protein aP2. Nature 447(7147), 959–965 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  21. T. Mita, M. Furuhashi, S. Hiramitsu, J. Ishii, K. Hoshina, S. Ishimura, T. Fuseya, Y. Watanabe, M. Tanaka, K. Ohno, H. Akasaka, H. Ohnishi, H. Yoshida, S. Saitoh, K. Shimamoto, T. Miura, FABP4 is secreted from adipocytes by adenyl cyclase-PKA- and guanylyl cyclase-PKG-dependent lipolytic mechanisms. Obesity 23(2), 359–367 (2015)

    CAS  PubMed  Google Scholar 

  22. M.E. Ertunc, J. Sikkeland, F. Fenaroli, G. Griffiths, M.P. Daniels, H. Cao, F. Saatcioglu, G.S. Hotamisligil, Secretion of fatty acid binding protein aP2 from adipocytes through a nonclassical pathway in response to adipocyte lipase activity. J. Lipid Res. 56(2), 423–434 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  23. J. Villeneuve, L. Bassaganyas, S. Lepreux, M. Chiritoiu, P. Costet, J. Ripoche, V. Malhotra, R. Schekman, Unconventional secretion of FABP4 by endosomes and secretory lysosomes. J. Cell Biol. 217(2), 649–665 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  24. A. Xu, Y. Wang, J.Y. Xu, D. Stejskal, S. Tam, J. Zhang, N.M. Wat, W.K. Wong, K.S. Lam, Adipocyte fatty acid-binding protein is a plasma biomarker closely associated with obesity and metabolic syndrome. Clin. Chem. 52(3), 405–413 (2006)

    CAS  PubMed  Google Scholar 

  25. R. Nakamura, T. Okura, Y. Fujioka, K. Sumi, K. Matsuzawa, S. Izawa, E. Ueta, M. Kato, S.I. Taniguchi, K. Yamamoto, Serum fatty acid-binding protein 4 (FABP4) concentration is associated with insulin resistance in peripheral tissues, a clinical study. PLoS ONE 12(6), e0179737 (2017)

    PubMed  PubMed Central  Google Scholar 

  26. A.W. Tso, A. Xu, P.C. Sham, N.M. Wat, Y. Wang, C.H. Fong, B.M. Cheung, E.D. Janus, K.S. Lam, Serum adipocyte fatty acid binding protein as a new biomarker predicting the development of type 2 diabetes: a 10-year prospective study in a Chinese cohort. Diabetes Care 30(10), 2667–2672 (2007)

    CAS  PubMed  Google Scholar 

  27. D.C. Yeung, A. Xu, C.W. Cheung, N.M. Wat, M.H. Yau, C.H. Fong, M.T. Chau, K.S. Lam, Serum adipocyte fatty acid-binding protein levels were independently associated with carotid atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 27(8), 1796–1802 (2007)

    CAS  PubMed  Google Scholar 

  28. M. Furuhashi, S. Saitoh, K. Shimamoto, T. Miura, Fatty acid-binding protein 4 (FABP4): pathophysiological insights and potent clinical biomarker of metabolic and cardiovascular diseases. Clin. Med. Insights Cardiol. 8(Suppl 3), 23–33 (2014)

    PubMed  Google Scholar 

  29. S.E. Park, E.J. Rhee, W.Y. Lee, W.J. Kim, S.H. Yoo, J.C. Bae, E.S. Choi, C.Y. Park, K.W. Oh, S.W. Park, S.W. Kim, The role of serum adipocyte fatty acid-binding protein on the development of metabolic syndrome is independent of pro-inflammatory cytokines. Nutr. Metab. Cardiovasc. Dis. 22(6), 525–532 (2012)

    CAS  PubMed  Google Scholar 

  30. L.E. Wu, D. Samocha-Bonet, P.T. Whitworth, D.J. Fazakerley, N. Turner, T.J. Biden, D.E. James, J. Cantley, Identification of fatty acid binding protein 4 as an adipokine that regulates insulin secretion during obesity. Mol. Metab. 3(4), 465–473 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  31. H. Cao, M. Sekiya, M.E. Ertunc, M.F. Burak, J.R. Mayers, A. White, K. Inouye, L.M. Rickey, B.C. Ercal, M. Furuhashi, G. Tuncman, G.S. Hotamisligil, Adipocyte lipid chaperone AP2 is a secreted adipokine regulating hepatic glucose production. Cell Metab. 17(5), 768–778 (2013)

    PubMed  PubMed Central  Google Scholar 

  32. A. Bosquet, S. Guaita-Esteruelas, P. Saavedra, R. Rodriguez-Calvo, M. Heras, J. Girona, L. Masana, Exogenous FABP4 induces endoplasmic reticulum stress in HepG2 liver cells. Atherosclerosis 249, 191–199 (2016)

    CAS  PubMed  Google Scholar 

  33. A. Bosquet, J. Girona, S. Guaita-Esteruelas, M. Heras, P. Saavedra-Garcia, N. Martinez-Micaelo, L. Masana, R. Rodriguez-Calvo, FABP4 inhibitor BMS309403 decreases saturated-fatty-acid-induced endoplasmic reticulum stress-associated inflammation in skeletal muscle by reducing p38 MAPK activation. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1863(6), 604–613 (2018)

    CAS  PubMed  Google Scholar 

  34. V. Lamounier-Zepter, C. Look, J. Alvarez, T. Christ, U. Ravens, W.H. Schunck, M. Ehrhart-Bornstein, S.R. Bornstein, I. Morano, Adipocyte fatty acid-binding protein suppresses cardiomyocyte contraction: a new link between obesity and heart disease. Circ. Res. 105(4), 326–334 (2009)

    CAS  PubMed  Google Scholar 

  35. R. Rodriguez-Calvo, J. Girona, M. Rodriguez, S. Samino, E. Barroso, D. de Gonzalo-Calvo, S. Guaita-Esteruelas, M. Heras, R.W. van der Meer, H.J. Lamb, O. Yanes, X. Correig, V. Llorente-Cortes, M. Vazquez-Carrera, L. Masana, Fatty acid binding protein 4 (FABP4) as a potential biomarker reflecting myocardial lipid storage in type 2 diabetes. Metabolism 96, 12–21 (2019)

    CAS  PubMed  Google Scholar 

  36. M. Furuhashi, T. Fuseya, M. Murata, K. Hoshina, S. Ishimura, T. Mita, Y. Watanabe, A. Omori, M. Matsumoto, T. Sugaya, T. Oikawa, J. Nishida, N. Kokubu, M. Tanaka, N. Moniwa, H. Yoshida, N. Sawada, K. Shimamoto, T. Miura, Local production of fatty acid-binding protein 4 in epicardial/perivascular fat and macrophages is linked to coronary atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 36(5), 825–834 (2016)

    CAS  PubMed  Google Scholar 

  37. G. Aragones, P. Saavedra, M. Heras, A. Cabre, J. Girona, L. Masana, Fatty acid-binding protein 4 impairs the insulin-dependent nitric oxide pathway in vascular endothelial cells. Cardiovasc. Diabetol. 11, 72 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  38. H. Cai, Q. Liu, D. Gao, T. Wang, T. Chen, G. Yan, K. Chen, Y. Xu, H. Wang, Y. Li, W. Zhu, Novel fatty acid binding protein 4 (FABP4) inhibitors: virtual screening, synthesis and crystal structure determination. Eur. J. Med. Chem. 90, 241–250 (2015)

    CAS  PubMed  Google Scholar 

  39. H.Y. Cai, T. Wang, J.C. Zhao, P. Sun, G.R. Yan, H.P. Ding, Y.X. Li, H.Y. Wang, W.L. Zhu, K.X. Chen, Benzbromarone, an old uricosuric drug, inhibits human fatty acid binding protein 4 in vitro and lowers the blood glucose level in db/db mice. Acta Pharm. Sin. 34(11), 1397–1402 (2013)

    CAS  Google Scholar 

  40. D.D. Gao, H.X. Dou, H.X. Su, M.M. Zhang, T. Wang, Q.F. Liu, H.Y. Cai, H.P. Ding, Z. Yang, W.L. Zhu, Y.C. Xu, H.Y. Wang, Y.X. Li, From hit to lead: structure-based discovery of naphthalene-1-sulfonamide derivatives as potent and selective inhibitors of fatty acid binding protein 4. Eur. J. Med. Chem. 154, 44–59 (2018)

    CAS  PubMed  Google Scholar 

  41. E. Murawska-Cialowicz, Adipose tissue - morphological and biochemical characteristic of different depots. Postepy Hig. Med. Dosw. 71, 466–484 (2017)

    Google Scholar 

  42. K.J. Prentice, J. Saksi, G.S. Hotamisligil, Adipokine FABP4 integrates energy stores and counterregulatory metabolic responses. J. Lipid Res. 60(4), 734–740 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  43. A. Xu, A.W. Tso, B.M. Cheung, Y. Wang, N.M. Wat, C.H. Fong, D.C. Yeung, E.D. Janus, P.C. Sham, K.S. Lam, Circulating adipocyte-fatty acid binding protein levels predict the development of the metabolic syndrome: a 5-year prospective study. Circulation 115(12), 1537–1543 (2007)

    CAS  PubMed  Google Scholar 

  44. S. Ishimura, M. Furuhashi, Y. Watanabe, K. Hoshina, T. Fuseya, T. Mita, Y. Okazaki, M. Koyama, M. Tanaka, H. Akasaka, H. Ohnishi, H. Yoshida, S. Saitoh, T. Miura, Circulating levels of fatty acid-binding protein family and metabolic phenotype in the general population. PLoS ONE 8(11), e81318 (2013)

    PubMed  PubMed Central  Google Scholar 

  45. A. Cabre, I. Lazaro, J. Girona, J.M. Manzanares, F. Marimon, N. Plana, M. Heras, L. Masana, Plasma fatty acid binding protein 4 is associated with atherogenic dyslipidemia in diabetes. J. Lipid Res. 49(8), 1746–1751 (2008)

    CAS  PubMed  Google Scholar 

  46. A.G. Cristancho, M.A. Lazar, Forming functional fat: a growing understanding of adipocyte differentiation. Nat. Rev. Mol. Cell Biol. 12(11), 722–734 (2011)

    CAS  PubMed  Google Scholar 

  47. J.M. Ntambi, K. Young-Cheul, Adipocyte differentiation and gene expression. J. Nutr. 130(12), 3122s–3126s (2000)

    CAS  PubMed  Google Scholar 

  48. S. Kralisch, N. Kloting, T. Ebert, M. Kern, A. Hoffmann, K. Krause, B. Jessnitzer, U. Lossner, I. Sommerer, M. Stumvoll, M. Fasshauer, Circulating adipocyte fatty acid-binding protein induces insulin resistance in mice in vivo. Obesity 23(5), 1007–1013 (2015)

    CAS  PubMed  Google Scholar 

  49. O. Astapova, T. Leff, Adiponectin and PPARgamma: cooperative and interdependent actions of two key regulators of metabolism. Vitam. Horm. 90, 143–162 (2012)

    CAS  PubMed  Google Scholar 

  50. Y. Fu, N. Luo, R.L. Klein, W.T. Garvey, Adiponectin promotes adipocyte differentiation, insulin sensitivity, and lipid accumulation. J. Lipid Res. 46(7), 1369–1379 (2005)

    CAS  PubMed  Google Scholar 

  51. A. Kennedy, K. Martinez, C.C. Chuang, K. LaPoint, M. McIntosh, Saturated fatty acid-mediated inflammation and insulin resistance in adipose tissue: mechanisms of action and implications. J. Nutr. 139(1), 1–4 (2009)

    CAS  PubMed  Google Scholar 

  52. E.P. Mottillo, X.J. Shen, J.G. Granneman, beta3-adrenergic receptor induction of adipocyte inflammation requires lipolytic activation of stress kinases p38 and JNK. Biochim. Biophys. Acta 1801(9), 1048–1055 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  53. J. Laurencikiene, V. van Harmelen, E. Arvidsson Nordstrom, A. Dicker, L. Blomqvist, E. Naslund, D. Langin, P. Arner, M. Ryden, NF-kappaB is important for TNF-alpha-induced lipolysis in human adipocytes. J. Lipid Res. 48(5), 1069–1077 (2007)

    CAS  PubMed  Google Scholar 

  54. D.Y. Oh, H. Morinaga, S. Talukdar, E.J. Bae, J.M. Olefsky, Increased macrophage migration into adipose tissue in obese mice. Diabetes 61(2), 346–354 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  55. K. Kajimoto, Y. Minami, H. Harashima, Cytoprotective role of the fatty acid binding protein 4 against oxidative and endoplasmic reticulum stress in 3T3-L1 adipocytes. FEBS Open Bio. 4, 602–610 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  56. N. Martinez-Micaelo, R. Rodriguez-Calvo, S. Guaita-Esteruelas, M. Heras, J. Girona, L. Masana, Extracellular FABP4 uptake by endothelial cells is dependent on cytokeratin 1 expression. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1864(3), 234–244 (2019)

    CAS  PubMed  Google Scholar 

  57. P. Saavedra, J. Girona, A. Bosquet, S. Guaita, N. Canela, G. Aragones, M. Heras, L. Masana, New insights into circulating FABP4: interaction with cytokeratin 1 on endothelial cell membranes. Biochim. Biophys. Acta 1853(11 Pt A), 2966–2974 (2015)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the “Personalized Medicines—Molecular Signature-based Drug Discovery and Development”, Strategic Priority Research Program of the Chinese Academy of Sciences (XDA12040336); the National Natural Science Foundation of China (81473262, 81773791); National Science & Technology Major Project “Key New Drug Creation and Manufacturing Program”, China (2018ZX09711002–002–007); Institutes for Drug Discovery and Development, Chinese Academy of Sciences (CASIMM0120164014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to He-Yao Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dou, HX., Wang, T., Su, HX. et al. Exogenous FABP4 interferes with differentiation, promotes lipolysis and inflammation in adipocytes. Endocrine 67, 587–596 (2020). https://doi.org/10.1007/s12020-019-02157-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-019-02157-8

Keywords

Navigation