Skip to main content
Log in

Dietary Amino Acids and Brain Serotonin Function; Implications for Stress-Related Affective Changes

  • Review Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Stress-related mood deterioration and affective disorders, such as depression, are among the leading causes of disease burden throughout the world, and are associated with severe medical consequences and mortality. Research has shown the involvement of dysfunctional brain serotonin (5-HT) biochemistry as a vulnerable biological factor in the onset of mood disturbances. Since the production of brain serotonin is limited by the availability of its plasma dietary amino acid precursor tryptophan, different foods and dietary amino acids that influence tryptophan availability are thought to alter affective behavior by changing brain 5-HT synthesis. Most dietary manipulation studies, however, reveal only modest affective changes, and note that these particularly occur in stress-prone or affected (sub-clinical) subjects. The current paper briefly summarizes evidence for the involvement of diminished brain serotonin function in affective disorders, discusses how this can be assessed and influenced by dietary manipulation procedures, and also notes how beneficial effects of dietary brain serotonin manipulation on affective behavior may be mediated by stress-induced brain serotonin vulnerability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adell, A., Garcia-Marquez, C., Armario, A., & Gelpi, E. (1988). Chronic stress increases serotonin and noradrenaline in rat brain and sensitizes their responses to a further acute stress’. Journal of Neurochemistry, 50, 1678–1681.

    Article  PubMed  CAS  Google Scholar 

  • Aghajanian, G. K., & Sanders-Bush, E. (2002). Serotonin. In K. L. Davis, D. Charney, J. T. Coyle, & C. Nemeroff (Eds.), Neuropsychopharmacology; The fifth generation of progress. Philadelphia: Lippincott Williams & Wilkins.

  • Agren, H., & Reibring, L. (1994). PET studies of presynaptic monoamine metabolism in depressed patients and healthy volunteers. Pharmacopsychiatry, 27, 2–6.

    Article  PubMed  CAS  Google Scholar 

  • Akil, H. A., & Morano, M. I. (1995). Stress. In F. E. Bloom & D. J. Kupfer (Eds.), Psychopharmacology: The fourth generation of progress (pp. 933–944). New York: Raven Press.

    Google Scholar 

  • Akiskal, H. S. (2005). Mood disorders: Historical introduction and conceptual overview. In B. J. Sadock & V. A. Sadock (Eds.), Kaplan & Sadock’s Comprehensive Textbook of Psychiatry. Philadelphia: Lippincott Williams & Wilkins.

    Google Scholar 

  • American Psychiatric Association. (1994). Diagnostic and Statistical Manual of Mental Disorders (4th ed.). Washington, DC: American Psychiatric Association.

    Google Scholar 

  • Azmitia, E. C., & Whitaker-Azmitia, P. M. (1995). Anatomy, cell biology and placticity of the serotonergic system. In F. E. Bloom & D. J. Kupfer (Eds.), Psychopharmacology: The fourth generation of progress (pp. 343–449). New York: Raven Press.

    Google Scholar 

  • Bell, C., Abrams, J., & Nutt, D. (2001). Tryptophan depletion and its implications for psychiatry. British Journal of Psychiatry, 178, 399–405.

    Article  PubMed  CAS  Google Scholar 

  • Benkelfat, C., Ellenbogen, M. A., Dean, P., Palmour, R. M., & Young, S. (1994). Mood-lowering effect of tryptophan depletion’. Archives of General Psychiatry, 51, 687–697.

    PubMed  CAS  Google Scholar 

  • Biggio, G., Fadda, F., Fanni, P., Tagliamonte, A., & Gessa, G. L. (1974). Rapid depletion of serum tryptophan, brain tryptophan, serotonin and 5-hydroxyindoleacetic acid by a tryptophan-free diet. Life Sciences, 14, 1321–1329.

    Article  PubMed  CAS  Google Scholar 

  • Bolger, N., & Schilling, E. A. (1991). Personality and the problems of everyday life: The role of neuroticism in exposure and reactivity to daily stressors. Journal of personality, 59, 355–386.

    Article  PubMed  CAS  Google Scholar 

  • Booij, L., Merens, W., Markus, C. R., & Van der Does, A. J. W. (2006). Diet rich in alpha-lactalbumin improves memory in unmedicated recovered depressed patients and matched controls. Journal of Psychopharmacology, 20(4), 526–535.

    Article  PubMed  CAS  Google Scholar 

  • Brown, G. W., Bifulco, A., & Harris, T. O. (1987). Life events, vulnerability and onset of depression: Some refinements’. British Journal of Psychiatry, 150, 30–42.

    Article  PubMed  CAS  Google Scholar 

  • Brown, G. W., & Harris, T. O. (1994). Life events and endogenous depression: A puzzle re-examined. Archives of General Psychiatry, 51, 525–534.

    PubMed  CAS  Google Scholar 

  • Carpenter, L. L., Anderson, G. M., Pelton, G. H., Gudin, J. A., Kirwin, P. D., Price, L. H., et al. (1998). Tryptophan depletion during continuous CSF sampling in healthy human subjects. Neuropsychopharmacology, 19, 26–35.

    Article  PubMed  CAS  Google Scholar 

  • Caspi, A., Sugden, K., Moffitt, T. E., Taylor, A., Craig, I. W., Harrington, H., et al. (2003). Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Science, 301, 386–389.

    Article  PubMed  CAS  Google Scholar 

  • Christensen, L., Krietsch, K., White, B., & Stagner, B. (1985). Impact of a dietary change on emotional distress. Journal of Abnormal Psychology, 94(4), 565–579.

    Article  PubMed  CAS  Google Scholar 

  • Cowen, P. J., Power, A. C., Ware, C. J., & Anderson, I. M. (1994). 5-HT1a receptor sensitivity in major depression. A neuroendocrine study with buspiron. The British Journal of Psychiatry, 164, 372–379.

    Article  PubMed  CAS  Google Scholar 

  • Curzon, G. (1985). Effects of food intake on brain transmitter amine precursors and amine synthesis. In M. Sandler & T. Silverstone (Eds.), Psychopharmacology and food (pp. 59–70). Oxford: Oxford University Press.

    Google Scholar 

  • Davidson, R. J., Pizzagalli, D., Nitschke, J. B., & Putnam, K. (2002). Depression; perspectives from affective neuroscience. Annual Review of Psychology, 53, 545–574.

    Article  PubMed  Google Scholar 

  • Davis, S., Heal, D. J., & Stanfort, S. C. (1995). Long-lasting effects of and acute stress on the neurochemistry and function of 5-Hydroxytryptaminergic neurons in the mouse brain. Psychopharmacology, 118, 267–272.

    Article  PubMed  CAS  Google Scholar 

  • Deijen, J. B., Heemstra, M. L., & Orlebeke, J. F. (1989). Dietary effects on mood and performance. Journal of Psychiatric Research, 23(3/4), 275–283.

    Article  PubMed  CAS  Google Scholar 

  • Delgado, P. L., Charney, D. S., Price, L. H., Aghajanian, G. K., Landis, H., & Heninger, G. R. (1990). Serotonin function and the mechanism of antidepressant action: Reversal of antidepressant-induced remission by rapid depletion of plasma tryptophan. Archives of General Psychiatry, 47, 411–418.

    PubMed  CAS  Google Scholar 

  • Delgado, P. L., Miller, H. L., Salomon, R. M., Licinio, J., Heninger, G. R., Gelenberg, A. J., et al. (1993). Monoamines and the mechanism of antidepressant action: Effects of catecholamine depletion on mood of patients treated with antidepressants. Psychopharmacology Bulletin, 29(3), 389–396.

    PubMed  CAS  Google Scholar 

  • Delgado, P. L., Price, L. H., Miller, H. L., Salomon, R. M., Aghajanian, G. K., Heninger, G. R., et al. (1994). Serotonin and the neurobiology of depression; effects of tryptophan depletion in drug-free depressed patients. Archives of General Psychiatry, 51, 865–874.

    PubMed  CAS  Google Scholar 

  • Duman, R. S., Heninger, G. R., & Nestler, E. J. (1997). A molecular and cellular theory of depression. Archives of General Psychiatry, 54, 597–606.

    PubMed  CAS  Google Scholar 

  • Eysenck, H. J., & Eysenck, M. W. (1985). Personality and individual differences. New York: Plenum Press.

    Google Scholar 

  • Fernstrom, J. D. (1990). Aromatic amino acids and monoamine synthesis in the central nervous system: Influence of the diet. The Journal of Nutritional Biochemistry, 1, 508–517.

    Article  PubMed  CAS  Google Scholar 

  • Fernstrom, J. D., Larin, F., & Wurtman, R. J. (1973). Correlations between brain tryptophan and plasma neutral amino acids levels following food consumption in rats. Life Sciences, 13, 517.

    Article  CAS  Google Scholar 

  • Fernstrom, J. D., & Wurtman, R. J. (1971). Brain serotonin content: Increase following ingestion of carbohydrate diet. Science, 174, 1023–1025.

    Article  PubMed  CAS  Google Scholar 

  • Fernstrom, J. D., & Wurtman, R. J. (1972). Brain serotonin content: Physiological regulation by plasma neutral amino acids. Science, 178, 414–416.

    Article  PubMed  CAS  Google Scholar 

  • Firk, C., & Markus, C. R. (2007). Serotonin by stress interaction a susceptibility factor for the development of depression? Journal of Psychopharmacology, 21(5), 538–544.

    Article  PubMed  CAS  Google Scholar 

  • Gallagher, D. J. (1990). Extraversion, neuroticism and appraisal of stressful academic events. Personality and Individual Differences, 11, 1053–1058.

    Article  Google Scholar 

  • Ginovart, N., Wilson, A. A., Meyer, J. H., Hussey, D., & Houle, S. (2003). [11C]-DASB, a tool for in vivo measurement of SSRI-induced occupancy of the serotonin transporter: PET characterization and evaluation in cats. Synapse, 47(2), 123–133.

    Article  PubMed  CAS  Google Scholar 

  • Graeff, F. G., Guimaraes, F. S., de Andrade, T. G. C. S., & Deakin, J. F. W. (1996). Role of 5-HT in stress, anxiety, and depression. Pharmacology, Biochemistry, and Behavior, 54, 129–141.

    Article  PubMed  CAS  Google Scholar 

  • Hariri, A. R., Draband, E. M., Munoz, K. A., Kolachana, B. S., Mattay, V. S., Egan, M. F., et al. (2005). A susceptibility gene for affective disorders and the response of the human amygdala. Archives of General Psychiatry, 62, 146–152.

    Article  PubMed  CAS  Google Scholar 

  • Hartmann, E., Spinweber, C., & Fernstrom, J. (1977). Diet, amino acids and sleep’. Sleep Research, 6, 61.

    Google Scholar 

  • Heine, W., Radke, M., Wutzke, K. D., Peters, E., & Kundt, G. (1996). Alpha-lactalbumin enriched low-proteiinfant formulas: A comparison to breast milk feeding. Acta Paedriatica, 85, 1024–1028.

    Google Scholar 

  • Heinz, A., Braus, D. F., Smolka, M. N., Wrase, J., Puls, I., Hermann, D., et al. (2005). Amygdala-prefrontal coupling depends on a genetic variation of the serotonin transporter. Nature Neuroscience, 8(1), 20–21.

    Article  PubMed  CAS  Google Scholar 

  • Heinz, A., Smolka, M. N., Braus, D. F., Wrase, J., Beck, A., Flor, H., et al. (2007). Serotonin transporter genotype (5-HTTLPR): Effects of neutral and undefined conditions on amygdala activation. Biological Psychiatry, 61, 1011–1014.

    Article  PubMed  CAS  Google Scholar 

  • Heninger, G. R., Delgado, P. L., & Charney, D. S. (1996). The revised monoamine theory of depression: A modulatory role for monoamines, based on new findings from monoamine depletion experiments in humans. Pharmacopsychiatry, 29, 2–11.

    Article  PubMed  CAS  Google Scholar 

  • Hu, X., Oroszi, G., Chun, J., Smith, T. L., Goldman, D., & Schuckit, M. A. (2005). An expanded evaluation of the relationship of four alleles to the level of response to alcohol and the alcoholism risk. Alcoholism; Clinical and Experimental Research, 29, 8–16.

    Article  CAS  Google Scholar 

  • Jans, L., Riedel, W., Markus, C. R., & Blokland, A. (2007). Serotonergic vulnerability and depression: Assumptions, experimental evidence and implications. Molecular Psychiatry, 12, 522–543.

    Article  PubMed  CAS  Google Scholar 

  • Jenaway, A., & Paykel, E. S. (1997). Life events and depression. In A. Honis & H. M. van Praag (Eds.), Depression, Neurobiological, Psychopathological and Therapeutic advances. Chicester: John Wiley & Sons.

    Google Scholar 

  • Kaye, W. H., Gwirtsman, H. E., Brewerton, T. D., George, D. T., & Wurtman, R. J. (1988). Bingeing behavior and plasma amino acids: A possible involvement of brain serotonin in bulimia nervosa. Psychiatric Research, 23, 31–43.

    Article  CAS  Google Scholar 

  • Kennett, G. A., Dickinson, S. L., & Curzon, G. (1985). Enhancement of some 5-HT-dependent behavioral responses following repeated immobilisation in rats’. Brain Research, 330, 253–263.

    Article  PubMed  CAS  Google Scholar 

  • Klaassen, T., Riedel, W. J., van Someren, A., Deutz, N. E., Honig, A., & van Praag, H. M. (1999). Mood effects of 24-hour tryptophan depletion in healthy first-degree relatives of patients with affective disorders. Biological Psychiatry, 46, 489–497.

    Article  PubMed  CAS  Google Scholar 

  • Knott, V. J., Howson, A. L., Perugini, M., Ravindran, A. V., & Young, S. N. (1999). The effect of acute tryptophan depletion and fenfluramine on quantitative EEG and mood in healthy male subjects. Biological Psychiatry, 46(2), 229–238.

    Article  PubMed  CAS  Google Scholar 

  • Leathwood, P. D., & Pollet, P. (1982/83). Diet-induced mood changes in normal populations. Journal of Psychiatric Research, 17(2), 147–154.

    Google Scholar 

  • LeDoux, J. (1996). The Emotional Brain: The mysterious underpinnings of emotional life. New York: Simon & Schuster.

    Google Scholar 

  • Lesch, K. P. (2001). Serotonergic gene expression and depression: Implications for developing novel antidepressants. Journal of Affective Disorders, 62, 57–76.

    Article  PubMed  CAS  Google Scholar 

  • Leyton, M., Young, S. N., Blier, P., Ellenbogen, M. A., Palmour, R. M., Ghardirian, A. M., et al. (1997). The effect of tryptophan depletion on mood in medication-free, former patients with major affective disorder. Neuropsychopharmacology, 16(4), 294–297.

    Article  PubMed  CAS  Google Scholar 

  • Lieberman, H. R., Wurtman, J. J., & Chew, B. (1986). Changes in mood after carbohydrate consumption among obese individuals. American Journal of Clinical Nutrition, 44, 772–778.

    PubMed  CAS  Google Scholar 

  • Linthorst, A. C. E. (2005). Stress, corticotrophin-releasing factor and serotonergic neurotransmission. In T. Steckler, N. H. Kalin, & J. M. H. M. Reul (Eds.), Handbook of stress and the brain (Part 1) (pp. 503–524). Amsetrdam: Elsevier.

    Google Scholar 

  • Lloyd, H. M., Rogers, P. J., & Hedderley, D. I. (1996). Acute effects on mood and performance of breakfast differing in fat and carbohydrate content. Appetite, 27, 151–164.

    Article  PubMed  CAS  Google Scholar 

  • Lotrich, F. E., & Pollock, B. G. (2004). Meta-analysis of serotonin transporter polymorphisms and affective disorders. Psychiatric Genetics, 14(3), 121–129.

    Article  PubMed  Google Scholar 

  • Luteijn, F., Starren, J., & van Dijk, H. (1975). Dutch personality inventory. Lisse, Netherlands: Swets & Zeitlinger.

  • Maccari, S., Piazza, P. V., Kabbaj, M., Barbazanges, A., Simons, H., & Le-Moal, M. (1995). Adoption reverses the long-term impairment in glucocorticoid feedback induced by prenatal stress. Journal of Neurosciences, 15, 110–116.

    CAS  Google Scholar 

  • Maes, M., & Meltzer, H. (1995). The serotonin hypothesis of major depression’. In F. E. Bloom & D. J. Kupfer (Eds.), Psychopharmacology; the fourth generation of progress (pp. 933–944). New York: Raven Press.

    Google Scholar 

  • Malberg, J. E., & Duman, R. S. (2003). Cell proliferation in adult hippocampus is decreased by inescapable stress: Reversal by fluoxetine treatment. Neurpsychopharmacology, 28(9), 1562–1571.

    Article  CAS  Google Scholar 

  • Malison, R. T., Price, L. H., Berman, R., et al. (1998). Reduced brain serotonin transporter availability in major depression as measured by [123I]-2β-carbomethyoxy-3β-(4-iodophenyl)trophane and single photon emission computed tomography. Biological Psychiatry, 44, 1090–1098.

    Article  PubMed  CAS  Google Scholar 

  • Markus, C. R. (2003). Food, stress and mood. In D. Wadson & F. Dodds (Eds.), Performance Functional Foods. Cambridge: Woodhead Publishing Limited.

    Google Scholar 

  • Markus, C. R. (2007). Effects of carbohydrates on brain tryptophan availability and stress performance. Biological Psychology, 76, 83–90.

    Article  PubMed  CAS  Google Scholar 

  • Markus, C. R., Jonkman, L. M., Lammers, J., Duitz, M., Messer, M., & Rigtering, N. (2005). Evening intake of alpha-lactalbumin increases plasma tryptophan availability and improves morning alertness and brain measures of attention. American Journal of Clinical Nutrition, 81, 1026–1033.

    Google Scholar 

  • Markus, C. R., Olivier, B., Panhuysen, G., Gugten, J., van de Alles, M., Westenberg, H., et al. (2000). The bovine protein Alpha-Lactalbumin increases the plasma Trp/LNAA, and in vulnerable subjects it raises brain serotonin activity, reduces cortisol and improves mood under stress’. The American Journal of Clinical Nutrition, 71, 1536–1544.

    PubMed  CAS  Google Scholar 

  • Markus, C. R., Panhuysen, G., Jonkman, L., & Bachman, M. (1999). Carbohydrate intake improves cognitive performance of stress-prone individuals under controllable laboratory stress. British Journal of Nutrition, 82, 457–467.

    PubMed  CAS  Google Scholar 

  • Markus, C. R., Panhuysen, G., Tuiten, A., Koppeschaar, H., Fekkes, D., & Peters, M. (1998). Does carbohydrate, protein poor food prevent a deterioration of mood and cognitive performance of stress-prone subjects when subjected to a stressful task? Appetite, 31, 49–65.

    Article  PubMed  CAS  Google Scholar 

  • McEwen, B. S., & Magarinos, A. M. (1997). Stress effects on morphology and function of the hippocampus. Annals of the New York Academy of Sciences, 821, 271–281.

    Article  PubMed  CAS  Google Scholar 

  • Meijer, O. C., & De Kloet, E. R. (1994). Corticosterone suppresses the expression of 5-HT1a receptor mRNA in rat dentate gyrus. European Journal of Pharmacology, 7, 653–657.

    Google Scholar 

  • Merens, W., Booij, L., Markus, C. R., Zitman, F., & van der Does, A. J. W. (2005). The effects of a diet enriched with alpha-lactalbumin on mood, stress and cognitive functions in recovered depressed patients. British Journal of Nutrition, 94, 415–422.

    Article  PubMed  CAS  Google Scholar 

  • Minet-Ringuet, J., Le-Ruvet, P. M., Tome, D., & Even, P. C. (2004). A tryptophan-rich protein diet efficiently restores sleep after food deprivation in the rat. Behavioural Brain Research, 152(2), 335–340.

    Article  PubMed  CAS  Google Scholar 

  • Moreno, F. A., Gelenberg, A. J., Heninger, G. R., Potter, R. L., McKnight, K. M., Allen, J., et al. (1999). Tryptophan depletion and depressive vulnerability. Biological Psychiatry, 46, 498–505.

    Article  PubMed  CAS  Google Scholar 

  • Moreno, F. A., Rowe, D. C., Kaiser, B., Chase, D., Michaels, T., Gelernter, J., et al. (2002). Association between a serotonin transporter promoter region polymorphism and mood response during tryptophan depletion. Molecular Psychiatry, 7, 213–216.

    Article  PubMed  CAS  Google Scholar 

  • Neumeister, A., Konstantinidis, A., Stastny, J., Schwarz, M. J., Vitouch, O., Willeit, M., et al. (2002). Association between serotonin transporter gene promoter polymorphism (5-HTTLPR) and behavioral responses to tryptophan depletion in healthy women with and without family history of depression. Archives of General Psychiatry, 59, 613–620.

    Article  PubMed  CAS  Google Scholar 

  • Neumeister, A., Praschak-Rieder, N., Hesselmann, B., & Rao, M. L. (1997). Effects of tryptophan depletion on drug-free patients with seasonal affective disorder during a stable response to bright light therapy. Archives of General Psychiatry, 54(2), 133–138.

    PubMed  CAS  Google Scholar 

  • Nishizawa, S., Benkelfat, C., Young, S. N., Leyton, M., Mzengeza, S., de Montigny, C., et al. (1997). Differences between males and females in rates of serotonin synthesis in human brain. Proceedings of the National Academy of Science, 94, 5308–5313.

    Article  CAS  Google Scholar 

  • Oliver, G., Wardle, J., & Gibson, E. L. (2000). Stress and food choice; a laboratory study. Psychosomatic Medicine, 62(6), 853–865.

    PubMed  CAS  Google Scholar 

  • Orosco, M., Rouch, C., Beslot, F., Feurte, S., Regnault, A., & Dauge, V. (2004). Alpha-lactalbumin-enriched diets enhance serotonin release and induce anxiolytic and rewarding effects in the rat. Behavioural Brain Research, 148, 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Pardridge, W. M., & Fierer, G. (1990). Transport of tryptophan into brain from the circulating, albumin-bound pool in rats and in rabbits. Journal of Neurochemistry, 54, 971–976.

    Article  PubMed  CAS  Google Scholar 

  • Peréz-Cruet, J., Chase, T. N., & Murphy, D. L. (1974). Dietary regulation of brain tryptophan metabolism by plasma ratio of free tryptophan and neutral amino acids in human. Nature, 248, 693–695.

    Article  PubMed  Google Scholar 

  • Reid, M., & Hammersley, R. (1995). Effects of carbohydrate intake on subsequent food intake and mood state’. Physiology & Behavior, 58(3), 421–427.

    Article  CAS  Google Scholar 

  • Richel, A. R., Deakin, J. F. W., & Anderson, I. M. (2005). Effect of tryptophan depletion on the response to controllable and uncontrollable noise stress. Biologial Psychiatry, 57, 295–300.

    Article  CAS  Google Scholar 

  • Roberts, S. B., & Kendler, K. S. (1999). Neuroticism and self-esteem as indices of the vulnerability to major depression in women. Psychological Medicine, 29, 1101–1109.

    Article  PubMed  CAS  Google Scholar 

  • Rosenthal, N. E., Genhart, M. J., Caballero, B., Jacobsen, F. M., Skwerer, R. G., Coursey, R. D., et al. (1989). Psychobiological effects of carbohydrate- and protein-rich meals in patients with seasonal affective disorder and normal controls. Biological Psychiatry, 25, 1029–1040.

    Article  PubMed  CAS  Google Scholar 

  • Sargent, P. A., Husted Kjaer, K., Bench Chr, J., et al. (2000). Brain serotonin 1A receptor binding measured by positron emission tomography with [11C] WAY–100635. Effects of depression and antidepressant treatment. Archives of General Psychiatry, 57, 174–180.

    Article  PubMed  CAS  Google Scholar 

  • Sayegh, R., Schiff, I., Wurtman, J., Spiers, P., McDermott, J., & Wurtman, R. (1995). The effect of a carbohydrate-rich beverage on mood, appetite, and cognitive function in women with premenstrual syndrome. Obstetrics and Gynecology, 86(4,1), 520–528.

    PubMed  CAS  Google Scholar 

  • Scrutton, H., Carbonnier, A., Cowen, P. J., & Harmer, C. J. (2007). Effects of alpha-lactalbumin on emotional processing in healthy women. Journal of Psychopharmacology, 21(5), 519–524.

    Article  PubMed  CAS  Google Scholar 

  • Smith, A., Leekam, S., Ralph, A., & McNeill, G. (1988). The influence of meal composition on post-lunch changes in performance efficiency and mood. Appetite, 10, 195–203.

    Article  PubMed  CAS  Google Scholar 

  • Smith, S. E., Pihl, R. O., Young, S. N., & Ervin, F. R. (1987). A test of possible cognitive and environmental influences on the mood lowering effect of tryptophan depletion in normal males. Psychopharmacology-(Berl), 91(4), 451–457.

    Article  CAS  Google Scholar 

  • Spring, B., Chiodo, J., Harden, M., Bourgeois, M., Mason, J., & Lutherer, L. (1989). Psychobiological effects of carbohydrates. Journal of Clinical Psychiatry, 50, 27–33.

    PubMed  Google Scholar 

  • Spring, B., Maller, O., Wurtman, J., Digman, L., & Gozolino, L. (1982). Effects of protein and carbohydrate meals on mood and performance: Interactions with sex and age. Journal of Psychiatric Research, 17, 155–167.

    Article  PubMed  Google Scholar 

  • Steinberg, S., Annable, L., & Young, S. N. (1994). Tryptophan in the treatment of late luteal phase dysphoric disorder: A pilot study. Journal of Psychiatry and Neuroscience, 19(2), 114–119.

    PubMed  CAS  Google Scholar 

  • Thompson, J. G. (1990). The psychobiology of emotions. New York: Plenum Press.

    Google Scholar 

  • Ursin, H., & Olff, M. (1993). The stress response. In S. C. Stanford & P. Salmon (Eds.), Stress, from synapse to syndrome (pp. 4–20). London: Academic Press.

    Google Scholar 

  • Van Praag, H. M. (2004). Can stress cause depression? Progress in Neuro-Psychopharmacology and Biological Psychiatry, 28, 891–907.

    Article  PubMed  CAS  Google Scholar 

  • Van Praag, H. M., Korf, J., & Puite, J. (1970). 5-Hydroxyindoleacetic acid levels in the cerebrospinal fluid of depressive patients treated with probenecid. Nature, 225, 1559–1560.

    Google Scholar 

  • Walderhaug, E., Magnusson, A., Neumeister, A., Lappalainen, J., Lunde, H., Refsum, H., et al. (2007). Interactive effects of sex and 5-HTTLPR on mood and impulsivity during tryptophan depletion in healthy people. Biological Psychiatry, 62, 593–599.

    Article  PubMed  CAS  Google Scholar 

  • Wardle, J., & Gibson, E. L. (2002). Impact of stress on diet; process and implications. In S. A. Stansfeld & M. Marmot (Eds.), Stress and the heart (pp. 125–149). London: BMJ Books.

    Google Scholar 

  • Watson, D., & Clark, L. A. (1984). Negative affectivity: The disposition to experience aversive emotional states. Psychological Bulletin, 96, 465–490.

    Article  PubMed  CAS  Google Scholar 

  • Wells, A., Read, N. W., & MacDonald, I. A. (1998). Effects of carbohydrate and lipid on resting energy expenditure, heart rate, sleepiness, and mood. Physiology & Behavior, 63(4), 621–628.

    Article  CAS  Google Scholar 

  • Wendland, J. R., Martin, B. J., Kruse, M. R., Lesch, K. P., & Murphy, D. L. (2006). Simultaneous genotyping of four functional loci of human SLC6A4, with a reappraisal of 5-HTTLPR and rs25531. Molecular Psychiatry, 11, 224–226.

    Article  PubMed  CAS  Google Scholar 

  • Williams, R. B., Marchuk, D. A., Gadde, K. M., Barefoot, J. C., Grichnik, K., Helms, M. J., et al. (2003). Serotoninrelated gene polymorphisms and central nervous system serotonin function. Neuropsychopharmacology, 28, 533–541.

    Article  PubMed  CAS  Google Scholar 

  • Williams, W. A., Shoaf, S. E., Hommer, D., Rawlings, R., & Linnoila, M. (1999). Effects of acute tryptophan depletion on plasma and cerebrospinal fluid tryptophan and 5-hydroxyindoleacetic acid in normal volunteers. Journal of Neurochemistry, 72, 1641–1647.

    Article  PubMed  CAS  Google Scholar 

  • Wurtman, R. J. (1987). Nutrients affecting brain composition and behavior’. Integrative Psychiatry, 5, 226–257.

    PubMed  CAS  Google Scholar 

  • Wurtman, R. J. (2005). Genes, stress, and depression. Metabolism, 54, 16–19.

    Article  PubMed  CAS  Google Scholar 

  • Wurtman, J. J., Brzezinski, A., Wurtman, R. J., & Laferrere, B. (1989). Effect of nutrient intake on premenstrual depression’. American Journal of Obstetrics and Gynecology, 161(5), 1228–1234.

    PubMed  CAS  Google Scholar 

  • Wurtman, R. J., & Wurtman, J. J. (1984). Nutritional control of central neurotransmitters. In K. M., Pirke & D. Ploog (Eds.), The psychobiology of anorexia nervosa. Springer-Verlag.

  • Wurtman, R. J., & Wurtman, J. J. (1986). Carbohydrate craving, obesity and brain serotonin’. Appetite, 7, 99.

    PubMed  CAS  Google Scholar 

  • Wurtman, J. J., Wurtman, R. J., Growdon, J. H., Henry, P., Lipscomb, A., et al. (1981). Carbohydrate craving in obese people: Suppression by treatments affecting serotoninergic transmission. International Journal of Eating Disorders, 1, 2–15.

    Article  Google Scholar 

  • Yokogoshi, H., & Wurtman, R. J. (1986). Meal composition and plasma amino acid ratios: Effects of various proteins or carbohydrates, and of various protein concentrations. Metabolism, 35, 837–842.

    Article  PubMed  CAS  Google Scholar 

  • Young, A. H., Goodwin, G. M., Dick, H., & Fink, G. (1994). Effects of glucocorticoids on 5-HT1a presynaptic function in the mouse. Psychopharmacology, 114, 360–364.

    Article  PubMed  CAS  Google Scholar 

  • Young, S. N., Smith, S. E., Pihl, R. O., & Ervin, F. R. (1985). Tryptophan depletion causes a rapid lowering of mood in normal males’. Psychopharmacology, 87, 173–177.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Rob Markus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markus, C.R. Dietary Amino Acids and Brain Serotonin Function; Implications for Stress-Related Affective Changes. Neuromol Med 10, 247–258 (2008). https://doi.org/10.1007/s12017-008-8039-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-008-8039-9

Keywords

Navigation