Skip to main content

Advertisement

Log in

Pulsed Electromagnetic Fields Modulate miRNAs During Osteogenic Differentiation of Bone Mesenchymal Stem Cells: a Possible Role in the Osteogenic-angiogenic Coupling

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Despite the high intrinsic ability of bone tissue to regenerate, bone healing fails in some pathological conditions and especially in the presence of large defects. Due to the strong relationship between bone development and vascularization during in vivo bone formation and repair, strategies promoting the osteogenic-angiogenic coupling are crucial for regenerative medicine. Increasing evidence shows that miRNAs play important roles in controlling osteogenesis and bone vascularization and are important tool in medical research although their clinical use still needs to optimize miRNA stability and delivery. Pulsed electromagnetic fields (PEMFs) have been successfully used to enhance bone repair and their clinical activity has been associated to their ability to promote the osteogenic differentiation of human mesenchymal stem cells (hMSCs). In this study we investigated the potential ability of PEMF exposure to modulate selected miRNAs involved in the osteogenic differentiation of human bone mesenchymal stem cells (hBMSCs). We show that, during in vitro hBMSC differentiation, PEMFs up-modulate the expression of miR-26a and miR-29b, which favor osteogenic differentiation, and decrease miR-125b which acts as an inhibitor miRNA. As PEMFs promote the expression and release of miRNAs also involved in angiogenesis, we conclude that PEMFs may represent a noninvasive and safe strategy to modulate miRNAs with relevant roles in bone repair and with the potential to regulate the osteogenic-angiogenic coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Li, Y., Fan, L., Liu, S., Liu, W., Zhang, H., Zhou, T., Wu, D., Yang, P., Shen, L., Chen, J., & Jin, Y. (2013). The promotion of bone regeneration through positive regulation of angiogenic-osteogenic coupling using microRNA-26a. Biomaterials, 34, 5048–5058.

    Article  CAS  Google Scholar 

  2. Ho-Shui-Ling, A., Bolander, J., Rustom, L. E., Johnson, A. W., Luyten, F. P., & Picart, C. (2018). Bone regeneration strategies: Engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials, 80, 143–162.

    Article  Google Scholar 

  3. Valenti, M. T., Carbonare, D., L., & Mottes, M. (2018). Role of microRNAs in progenitor cell commitment and osteogenic differentiation in health and disease. International Journal of Molecular Medicine, 41, 2441–2449.

  4. Li, B. (2018). MicroRNA Regulation in Osteogenic and Adipogenic Differentiation of Bone Mesenchymal Stem Cells and its Application in Bone Regeneration. Current Stem Cell Research & Therapy, 13, 26–30.

    CAS  Google Scholar 

  5. Huang, C., Geng, J., & Jiang, S. (2017). MicroRNAs in regulation of osteogenic differentiation of mesenchymal stem cells. Cell and Tissue Research, 368, 229–238.

    Article  CAS  Google Scholar 

  6. Peng, S., Gao, D., Gao, C., Wei, P., Niu, M., & Shuai, C. (2016). MicroRNAs regulate signaling pathways in osteogenic differentiation of mesenchymal stem cells (Review). Molecular Medicine Reports, 14, 623–629.

    Article  CAS  Google Scholar 

  7. Fröhlich, L. F. (2019). Micrornas at the Interface between Osteogenesis and Angiogenesis as Targets for Bone Regeneration. Cells, 8, E121.

  8. Yuan, J., Xin, F., & Jiang, W. (2018). Underlying Signaling Pathways and Therapeutic Applications of Pulsed Electromagnetic Fields in Bone Repair. Cellular Physiology and Biochemistry, 46, 1581–1594.

    Article  CAS  Google Scholar 

  9. Massari, L., Benazzo, F., Falez, F., Perugia, D., Pietrogrande, L., Setti, S., Osti, R., Vaienti, E., Ruosi, C., & Cadossi, R. (2019). Biophysical stimulation of bone and cartilage: state of the art and future perspectives. International Orthopaedics, 43, 539–551.

    Article  Google Scholar 

  10. De Mattei, M., Gagliano, N., Moscheni, C., Dellavia, C., Calastrini, C., Pellati, A., Gioia, M., Caruso, A., & Stabellini, G. (2005). Changes in polyamines, c-myc and c-fos gene expression in osteoblast-like cells exposed to pulsed electromagnetic fields. Bioelectromagnetics, 26, 207–214.

    Article  Google Scholar 

  11. Lohmann, C. H., Schwartz, Z., Liu, Y., Li, Z., Simon, B. J., Sylvia, V. L., Dean, D. D., Bonewald, L. F., Donahue, H. J., & Boyan, B. D. (2003). Pulsed electromagnetic fields affect phenotype and connexin 43 protein expression in MLO-Y4 osteocyte-like cells and ROS 17/2.8 osteoblast-like cells. Journal of Orthopaedics Research, 21, 326–334.

    Article  CAS  Google Scholar 

  12. Ongaro, A., Pellati, A., Bagheri, L., Fortini, C., Setti, S., & De Mattei, M. (2014). Pulsed electromagnetic fields stimulate osteogenic differentiation in human bone marrow and adipose tissue derived mesenchymal stem cells. Bioelectromagnetics, 35, 426–436.

    Article  CAS  Google Scholar 

  13. Bagheri, L., Pellati, A., Rizzo, P., Aquila, G., Massari, L., De Mattei, M., & Ongaro, A. (2018). Notch pathway is active during osteogenic differentiation of human bone marrow mesenchymal stem cells induced by pulsed electromagnetic fields. Journal of Tissue Engineering and Regenerative Medicine, 12, 304–315.

    Article  CAS  Google Scholar 

  14. Wang, J., Liu, S., Li, J., Zhao, S., & Yi, Z. (2019). Roles for miRNAs in osteogenic differentiation of bone marrow mesenchymal stem cells. Stem Cell Research and Therapy, 10, 197.

    Article  Google Scholar 

  15. Leone, L., Podda, M. V., & Grassi, C. (2015). Impact of electromagnetic fields on stem cells: common mechanisms at the crossroad between adult neurogenesis and osteogenesis. Frontiers in Cellular Neuroscience, 9, 228.

    Article  Google Scholar 

  16. Selvamurugan, N., He, Z., Rifkin, D., Dabovic, B., & Partridge, N. C. (2017). Pulsed Electromagnetic Field Regulates MicroRNA 21 Expression to Activate TGF-β Signaling in Human Bone Marrow Stromal Cells to Enhance Osteoblast Differentiation. Stem Cells International, 2017, 2450327.

  17. Vezzali, F., Grassilli, S., Lambertini, E., Brugnoli, F., Patergnani, S., Nika, E., Piva, R., Pinton, P., Capitani, S., & Bertagnolo, V. (2018). Vav1 is necessary for PU.1 mediated upmodulation of miR-29b in acute myeloid leukaemia-derived cells. Journal of Cellular and Molecular Medicine, 22, 3149–3158.

    Article  CAS  Google Scholar 

  18. Volinia, S., Bertagnolo, V., Grassilli, S., Brugnoli, F., Manfrini, M., Galasso, M., Scatena, C., Mazzanti, C. M., Lessi, F., Naccarato, G., Caligo, A., Bianchini, E., Piubello, Q., Orvieto, E., Rugge, M., Natali, C., Reale, D., Vecchione, A., Warner, S., Croce, C. M., & Capitani, S. (2018). Levels of miR-126 and miR-218 are elevated in ductal carcinoma in situ (DCIS) and inhibit malignant potential of DCIS derived cells. Oncotarget, 9, 23543–23553.

    Article  Google Scholar 

  19. Pegoraro, A., Bortolotti, D., Marci, R., Caselli, E., Falzoni, S., De Marchi, E., Di Virgilio, F., Rizzo, R., & Adinolfi, E. (2020). The P2 × 7 Receptor 489C > T Gain of Function Polymorphism Favors HHV-6A Infection and Associates With Female Idiopathic Infertility. Frontiers in Pharmacology, 11, 96.

    Article  Google Scholar 

  20. Sun, X., Guo, Q., Wei, W., Robertson, S., Yuan, Y., & Luo, X. (2019). Current Progress on MicroRNA-Based Gene Delivery in the Treatment of Osteoporosis and Osteoporotic Fracture. International Journal of Endocrinology, 6782653.

  21. Oryan, A., Kamali, A., Moshiri, A., & Baghaban Eslaminejad, M. (2017). Role of Mesenchymal Stem Cells in Bone Regenerative Medicine: What Is the Evidence? Cells Tissues and Organs, 204, 59–83.

    Article  CAS  Google Scholar 

  22. Chen, J., Deng, L., Porter, C., Alexander, G., Patel, D., Vines, J., Zhang, X., Chasteen-Boyd, D., Sung, H. J., Li, Y. P., Javed, A., Gilbert, S., Cheon, K., & Jun, H. W. (2018). Angiogenic and Osteogenic Synergy of Human Mesenchymal Stem Cells and Human Umbilical Vein Endothelial Cells Cocultured on a Nanomatrix. Scientific Reports, 8, 15749.

    Article  Google Scholar 

  23. Wang, C., Li, Y., Yang, M., Zou, Y., Liu, H., Liang, Z., Yin, Y., Niu, G., Yan, Z., & Zhang, B. (2018). Efficient Differentiation of Bone Marrow Mesenchymal Stem Cells into Endothelial Cells in Vitro. European Journal of Vascular and Endovascular Surgery, 55, 257e265.

    Article  Google Scholar 

  24. Trompeter, H. I., Dreesen, J., Hermann, E., Iwaniuk, K. M., Hafner, M., Renwick, N., Tuschl, T., & Wernet, P. (2013). MicroRNAs miR-26a, miR-26b, and miR-29b accelerate osteogenic differentiation of unrestricted somatic stem cells from human cord blood. BMC genomics, 14, 111.

    Article  CAS  Google Scholar 

  25. Su, X., Liao, L., Shuai, Y., Jing, H., Liu, S., Zhou, H., Liu, Y., & Jin, Y. (2015). MiR-26a functions oppositely in osteogenic differentiation of BMSCs and ADSCs depending on distinct activation and roles of Wnt and BMP signaling pathway. Cell Death Disease, 6, e1851.

    Article  CAS  Google Scholar 

  26. Hosseinpour, S., He, Y., Nanda, A., & Ye, Q. (2019). MicroRNAs Involved in the Regulation of Angiogenesis in Bone Regeneration. Calcified Tissue International, 105, 223–238.

    Article  CAS  Google Scholar 

  27. Suh, J. S., Lee, J. Y., Choi, Y. S., Chung, C. P., & Park, Y. J. (2013). Peptide-mediated intracellular delivery of miRNA-29b for osteogenic stem cell differentiation. Biomaterials, 34, 4347–4359.

    Article  CAS  Google Scholar 

  28. Liu, Q., Lin, Z., Liu, Y., Du, J., Lin, H., & Wang, J. (2019). Delivery of miRNA-29b Using R9-LK15, a Novel Cell-Penetrating Peptide, Promotes Osteogenic Differentiation of Bone Mesenchymal Stem Cells. Biomed Research International, 2019, 3032158.

  29. Narayanan, A., Srinaath, N., Rohini, M., & Selvamurugan, N. (2019). Regulation of Runx2 by MicroRNAs in osteoblast differentiation. Life Science, 232, 116676.

    Article  CAS  Google Scholar 

  30. Moghaddam, T., & Neshati, Z. (2019). Role of microRNAs in osteogenesis of stem cells. Journal of Cellular Biochemistry, 120, 14136–14155.

    Article  CAS  Google Scholar 

  31. Wang, H., Xie, Z., Hou, T., Li, Z., Huang, K., Gong, J., Zhou, W., Tang, K., Xu, J., & Dong, S. (2017). MiR-125b Regulates the Osteogenic Differentiation of Human Mesenchymal Stem Cells by Targeting BMPR1b. Cellular Physiology and Biochemistry, 41, 530–542.

    Article  CAS  Google Scholar 

  32. Chen, S., Yang, L., Jie, Q., Lin, Y. S., Meng, G. L., Fan, J. Z., Zhang, J. K., Fan, J., Luo, Z. J., & Liu, J. (2014). MicroRNA125b suppresses the proliferation and osteogenic differentiation of human bone marrowderived mesenchymal stem cells. Molecular Medicine Reports, 9, 1820–1826.

    Article  CAS  Google Scholar 

  33. Pinto, M. T., Nicolete, L. D. F., Rodrigues, E. S., Palma, P. V. B., Orellana, M. D., Kashima, S., & Covas, D. T. (2013). Overexpression of hsa-miR-125b During Osteoblastic Differentiation Does Not Influence Levels of Runx2, Osteopontin, and ALPL Gene Expression. Brazilian Journal of Medical and Biological Research, 46, 676–680.

    Article  CAS  Google Scholar 

  34. Xue, N., Qi, L., Zhang, G., & Zhang, Y. (2018). miRNA-125b Regulates Osteogenic Differentiation of Periodontal Ligament Cells Through NKIRAS2/NF-κB Pathway. Cellular Physiology and Biochemistry, 48, 1771–1781.

    Article  CAS  Google Scholar 

  35. Hu, B., Li, Y., Wang, M., Zhu, Y., Zhou, Y., Sui, B., Tan, Y., Ning, Y., Wang, J., He, J., Yang, C., & Zou, D. (2018). Functional reconstruction of critical-sized load-bearing bone defects using a Sclerostin-targeting miR-210-3p-based construct to enhance osteogenic activity. Acta Biomaterialia, 76, 275–282.

    Article  CAS  Google Scholar 

  36. Riddle, R. C., Khatri, R., Schipani, E., & Clemens, T. L. (2009). Role of hypoxia-inducible factor-1alpha in angiogenic-osteogenic coupling. Journal of Molecular Medicine (Berl), 87, 583–590.

    Article  CAS  Google Scholar 

  37. Liu, X. D., Cai, F., Liu, L., Zhang, Y., & Yang, A. L. (2015). MicroRNA-210 is involved in the regulation of postmenopausal osteoporosis through promotion of VEGF expression and osteoblast differentiation. Biological Chemistry, 396, 339–347.

    Article  CAS  Google Scholar 

  38. Xu, J. F., Yang, G. H., Pan, X. H., Zhang, S. J., Zhao, C., Qiu, B. S., Gu, H. F., Hong, J. F., Cao, L., Chen, Y., Xia, B., Bi, Q., & Wang, Y. P. (2014). Altered microRNA expression profile in exosomes during osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. PLoS One, 9, e114627.

    Article  Google Scholar 

  39. Shi, L., Feng, L., Liu, Y., Duan, J. Q., Lin, W. P., Zhang, J. F., & Li, G. (2018). MicroRNA-218 Promotes Osteogenic Differentiation of Mesenchymal Stem Cells and Accelerates Bone Fracture Healing. Calcified Tissue International, 103, 227–236.

    Article  CAS  Google Scholar 

  40. Zuo, R., Kong, L., Wang, M., Wang, W., Xu, J., Chai, Y., Guan, J., Kang, Q. (2019). Exosomes derived from human CD34 < sup>+</sup > stem cells transfected with miR-26a prevent glucocorticoid-induced osteonecrosis of the femoral head by promoting angiogenesis and osteogenesis. Stem Cell Research and Therapy, 10, 321.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Mattia Ferrarese, Department of Life Sciences and Biotechnology, University of Ferrara, for providing primers for VWF analysis.

Funding

This study was funded by grants from by IGEA S.p.A (Carpi, Italy) to MDM and from University of Ferrara to MDM and VB.

Author information

Authors and Affiliations

Authors

Contributions

MDM and VB was responsible for the study concept, supervised all the experiments and integrated the results; SG, AP, FB, EDM and DC performed experiments and prepared figures; VB and MDM drafted the manuscript with input and approval from all authors.

Corresponding authors

Correspondence to Monica De Mattei or Valeria Bertagnolo.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethics Approval

Not applicable.

Consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Mattei, M., Grassilli, S., Pellati, A. et al. Pulsed Electromagnetic Fields Modulate miRNAs During Osteogenic Differentiation of Bone Mesenchymal Stem Cells: a Possible Role in the Osteogenic-angiogenic Coupling. Stem Cell Rev and Rep 16, 1005–1012 (2020). https://doi.org/10.1007/s12015-020-10009-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-020-10009-6

Keywords

Navigation