Skip to main content

Advertisement

Log in

Do Cancer Cell Lines Have Fixed or Fluctuating Stem Cell Phenotypes? – Studies with the NTera2 Cell Line

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

One of the important questions when studying established cancer cell lines is whether such cells contain a subpopulation of primitive cancer stem cells that maintains the expansion of the cell line. To address this issue, we performed studies on the established human embryonal carcinoma cell line NTera2 by evaluating the potential stemness of cells sorted according to their expression of the cell surface stem cell markers CD133 and SSEA4. By performing in vitro and in vivo assays, we observed different properties of cells expressing both, one, or neither of these antigens. While sorted SSEA4+ subpopulations exhibited the greatest propensity for migration toward normal serum and the highest seeding efficiency in the lungs of immunodeficient mice, CD133SSEA4 cells displayed high seeding efficiency to the bone marrow after injection in vivo. It is worth noting that these properties did not depend on the size of the evaluated cells. To address the question of whether cancer stem cell phenotypes in cell lines are fixed or fluctuating, we sorted single cells according to their expression of CD133 and SSEA4 antigens and observed that cells which did not express these cancer stem cell markers gave rise to cells that express these markers after expansion in vitro. Therefore, our results support the idea that within established cancer cell lines, the phenotype of the cell subpopulation expressing cancer stem cell markers is not fixed but fluctuates during cell line expansion, and cells negative for these markers may acquire their expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mizrak, D., Brittan, M., & Alison, M. (2008). CD133: Molecule of the moment. The Journal of Pathology, 214(1), 3–9.

    Article  CAS  PubMed  Google Scholar 

  2. Field, M., et al. (2010). Embryonic stem cell markers distinguishing cancer stem cells from normal human neuronal stem cell populations in malignant glioma patients. Clinical Neurosurgery, 57, 151–159.

    PubMed  Google Scholar 

  3. Grasso, C., et al. (2016). Iterative sorting reveals CD133+ and CD133- melanoma cells as phenotypically distinct populations. BMC Cancer, 16(1), 726.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kucia, M., et al. (2007). Morphological and molecular characterization of novel population of CXCR4+ SSEA-4+ Oct-4+ very small embryonic-like cells purified from human cord blood: Preliminary report. Leukemia, 21(2), 297–303.

    Article  CAS  PubMed  Google Scholar 

  5. Gang, E. J., et al. (2007). SSEA-4 identifies mesenchymal stem cells from bone marrow. Blood, 109(4), 1743–1751.

    Article  CAS  PubMed  Google Scholar 

  6. Lou, Y. W., et al. (2014). Stage-specific embryonic antigen-4 as a potential therapeutic target in glioblastoma multiforme and other cancers. Proceedings of the National Academy of Sciences of the United States of America, 111(7), 2482–2487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gunjal, P., et al., (2015) An emerging question about putative cancer stem cells in established cell lines-are they true stem cells or a fluctuating cell phenotype? Journal of Cancer Stem Cell Research. 3.

  8. Chadalavada, R. S., et al. (2007). Constitutive gene expression predisposes morphogen-mediated cell fate responses of NT2/D1 and 27X-1 human embryonal carcinoma cells. Stem Cells, 25(3), 771–778.

    Article  CAS  PubMed  Google Scholar 

  9. Malecki, M., et al. (2013). TRA-1-60+, SSEA-4+, POU5F1+, SOX2+, NANOG+ clones of pluripotent stem cells in the embryonal carcinomas of the testes. Journal of Stem Cell Research and Therapy, 3(1). doi:10.4172/2157-7633.1000134.

  10. Park, E. K., et al. (2015). Transcriptional repression of cancer stem cell marker CD133 by tumor suppressor p53. Cell Death & Disease, 6, e1964.

    Article  CAS  Google Scholar 

  11. Immervoll, H., et al. (2008). Expression of the "stem cell marker" CD133 in pancreas and pancreatic ductal adenocarcinomas. BMC Cancer, 8, 48.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Suzuki, S., et al. (2010). Identification and characterization of cancer stem cells in ovarian yolk sac tumors. Cancer Science, 101(10), 2179–2185.

    Article  CAS  PubMed  Google Scholar 

  13. Nomura, A., et al. (2015). CD133 initiates tumors, induces epithelial-mesenchymal transition and increases metastasis in pancreatic cancer. Oncotarget, 6(10), 8313–8322.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sansone, P., et al. (2016). Self-renewal of CD133(hi) cells by IL6/Notch3 signalling regulates endocrine resistance in metastatic breast cancer. Nature Communications, 7, 10442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wenk, J., et al. (1994). Glycolipids of germ cell tumors: Extended globo-series glycolipids are a hallmark of human embryonal carcinoma cells. International Journal of Cancer, 58(1), 108–115.

    Article  CAS  PubMed  Google Scholar 

  16. Schwartz, C. M., et al. (2005). NTera2: A model system to study dopaminergic differentiation of human embryonic stem cells. Stem Cells and Development, 14(5), 517–534.

    Article  CAS  PubMed  Google Scholar 

  17. Aloia, A., et al. (2015). The sialyl-glycolipid stage-specific embryonic antigen 4 marks a subpopulation of chemotherapy-resistant breast cancer cells with mesenchymal features. Breast Cancer Research, 17(1), 146.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sivasubramaniyan, K., et al. (2015). Expression of stage-specific embryonic antigen-4 (SSEA-4) defines spontaneous loss of epithelial phenotype in human solid tumor cells. Glycobiology, 25(8), 902–917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Reuter, V. E. (2005). Origins and molecular biology of testicular germ cell tumors. Modern Pathology, 18(Suppl 2), S51–S60.

    Article  CAS  PubMed  Google Scholar 

  20. Saitou, M., & Yamaji, M. (2012). Primordial germ cells in mice. Cold Spring Harbor Perspectives in Biology, 4, a008375.

  21. Schneider, G., et al. (2014). The paternally imprinted DLK1-GTL2 locus is differentially methylated in embryonal and alveolar rhabdomyosarcomas. International Journal of Oncology, 44(1), 295–300.

    Article  CAS  PubMed  Google Scholar 

  22. Watanabe, K., et al. (2010). Cripto-1 is a cell surface marker for a tumorigenic, undifferentiated subpopulation in human embryonal carcinoma cells. Stem Cells, 28(8), 1303–1314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Azevedo, A. S., et al. (2015). Metastasis of circulating tumor cells: Favorable soil or suitable biomechanics, or both? Cell Adhesion & Migration, 9(5), 345–356.

    Article  CAS  Google Scholar 

  24. Cameron, M. D., et al. (2000). Temporal progression of metastasis in lung: Cell survival, dormancy, and location dependence of metastatic inefficiency. Cancer Research, 60(9), 2541–2546.

    CAS  PubMed  Google Scholar 

  25. Zhan, Q., Wang, C., & Ngai, S. (2013). Ovarian cancer stem cells: A new target for cancer therapy. BioMed Research International, 2013, 916819.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Tesfaigzi, J., & Carlson, D. M. (1996). Cell cycle-specific expression of G(0)SPR1 in Chinese hamster ovary cells. Experimental Cell Research, 228(2), 277–282.

    Article  CAS  PubMed  Google Scholar 

  27. Darzynkiewicz, Z., et al. (1982). Cell heterogeneity during the cell cycle. Journal of Cellular Physiology, 113(3), 465–474.

    Article  CAS  PubMed  Google Scholar 

  28. Galkowski, D. et al. (2017). Of cytometry, stem cells and fountain of Youth. Stem Cell Reviews and Reports. doi:10.1007/s12015-017-9733-5.

  29. Whitfield, M. L., et al. (2000). Stem-loop binding protein, the protein that binds the 3′ end of histone mRNA, is cell cycle regulated by both translational and posttranslational mechanisms. Molecular and Cellular Biology, 20(12), 4188–4198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Morimoto, H., et al. (2009). Phenotypic plasticity of mouse spermatogonial stem cells. PloS One, 4(11), e7909.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Medema, J. P. (2013). Cancer stem cells: The challenges ahead. Nature Cell Biology, 15(4), 338–344.

    Article  CAS  PubMed  Google Scholar 

  32. Habibian, H. K., et al. (1998). The fluctuating phenotype of the lymphohematopoietic stem cell with cell cycle transit. The Journal of Experimental Medicine, 188(2), 393–398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kono, T., et al. (2004). Birth of parthenogenetic mice that can develop to adulthood. Nature, 428(6985), 860–864.

    Article  CAS  PubMed  Google Scholar 

  34. Wu, Q., et al. (2006). Regulated expression of two sets of paternally imprinted genes is necessary for mouse parthenogenetic development to term. Reproduction, 131(3), 481–488.

    Article  CAS  PubMed  Google Scholar 

  35. Qian, P., et al. (2016). The Dlk1-Gtl2 locus preserves LT-HSC function by inhibiting the PI3K-mTOR pathway to restrict mitochondrial metabolism. Cell Stem Cell, 18(2), 214–228.

    Article  CAS  PubMed  Google Scholar 

  36. Venkatraman, A., et al. (2013). Maternal imprinting at the H19-Igf2 locus maintains adult haematopoietic stem cell quiescence. Nature, 500(7462), 345–349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Stella and Henry Endowment, and the NCN OPUS grant 2016/21/B/NZ4/00201 from the National Science Center in Poland to Magdalena Kucia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zachariah P. Sellers.

Ethics declarations

Disclosures

The authors indicate no potential conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sellers, Z.P., Schneider, G., Bujko, K. et al. Do Cancer Cell Lines Have Fixed or Fluctuating Stem Cell Phenotypes? – Studies with the NTera2 Cell Line. Stem Cell Rev and Rep 13, 603–610 (2017). https://doi.org/10.1007/s12015-017-9743-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-017-9743-3

Keywords

Navigation