Skip to main content
Log in

Distinct Signaling Pathways Activated by “Extracellular” and “Intracellular” Serotonin in Heart Valve Development and Disease

  • Review Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Cardiac valve diseases are often due to developmental anomalies that progressively lead to the abnormal distribution and organization of extracellular matrix proteins overtime. Whereas mechanisms underlying adult valvulopathies are unknown, previous work has shown a critical involvement of the monoamine serotonin in disease pathogenesis. In particular, the interaction of serotonin with its receptors can activate transforming growth factor-β1 (TGF-β1) signaling, which in turn promotes extracellular matrix gene expression. Elevated levels of circulating serotonin can lead to aberrant TGF-β1 signaling with significant effects on cardiac valve structure and function. Additional functions of serotonin have recently been reported in which internalization of serotonin, through the serotonin transporter SERT, can exert important cytoskeletal functions in lieu of simply being degraded. Recent findings demonstrate that intracellular serotonin regulates cardiac valve remodeling, and perturbation of this pathway can also lead to heart valve defects. Thus, both extracellular and intracellular mechanisms of serotonin action appear to be operative in heart valve development, functionality, and disease. This review summarizes some of the salient aspects of serotonin activity during cardiac valve development and disease pathogenesis with an understanding that further elaboration of intracellular and extracellular serotonin pathways may lead to beneficial treatments for heart valve disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nebigil, C. G., & Maroteaux, L. (2001). A novel role for serotonin in heart. Trends in Cardiovascular Medicine, 11, 329–335.

    PubMed  CAS  Google Scholar 

  2. Maurer-Spurej, E. (2005). Serotonin reuptake inhibitors and cardiovascular diseases: A platelet connection. Cellular and Molecular Life Sciences, 62, 159–170.

    PubMed  CAS  Google Scholar 

  3. Watts, S. W., Morrison, S. F., Davis, R. P., & Barman, S. M. (2012). Serotonin and blood pressure regulation. Pharmacological Reviews, 64, 359–388.

    PubMed  CAS  Google Scholar 

  4. Levy, R. J. (2006). Serotonin transporter mechanisms and cardiac disease. Circulation, 113, 2–4.

    PubMed  Google Scholar 

  5. Slominski, A., Pisarchik, A., Semak, I., Sweatman, T., Szczesniewski, A., & Wortsman, J. (2002). Serotoninergic system in hamster skin. J investigative Dermatology, 119, 934–942.

    CAS  Google Scholar 

  6. Sauls, K., de Vlaming, A., Harris, B. S., Williams, K., Wessels, A., Levine, R. A., et al. (2012). Developmental basis for filamin-A-associated myxomatous mitral valve disease. Cardiovascular Research, 96, 109–119.

    PubMed  CAS  Google Scholar 

  7. Ikeda, K., Tojo, K., Otsubo, C., Udagawa, T., Kumazawa, K., Ishikawa, M., et al. (2005). 5-Hydroxytryptamine synthesis in HL-1 cells and neonatal rat cardiocytes. Biochemical and Biophysical Research Communications, 328, 522–525.

    PubMed  CAS  Google Scholar 

  8. Manjarrez-Gutiérrez, G., Camacho-Calderón, N., Mercado-Camargo, R., Boyzo-Montes de Oca, A., Arvizu-Flores, A., & Hernández-Rodríguez, J. (2009). Characterization of serotonergic cells in foetal heart tissue. Cirugia y Cirujanos, 77, 395–400.

    PubMed  Google Scholar 

  9. Pönicke, K., Gergs, U., Buchwalow, I. B., Hauptmann, S., & Neumann, J. (2012). On the presence of serotonin in mammalian cardiomyocytes. Molecular and Cellular Biochemistry, 365, 301–312.

    PubMed  Google Scholar 

  10. Lorenzen-Schmidt, I., Schmid-Schönbein, G. W., Giles, W. R., McCulloch, A. D., Chien, S., & Omens, J. H. (2006). Chronotropic response of cultured neonatal rat ventricular myocytes to short-term fluid shear. Cell Biochemistry and Biophysics, 4, 113–122.

    Google Scholar 

  11. Villalón, C. M., & Centurión, D. (2007). Cardiovascular responses produced by 5-hydroxytriptamine: A pharmacological update on the receptors/mechanisms involved and therapeutic implications. Naunyn Schmiedebergs Archives of Pharmacology, 376, 45–63.

    Google Scholar 

  12. Kaumann, A. J., & Levy, F. O. (2006). 5-hydroxytryptamine receptors in the human cardiovascular system. Pharmacology & Therapeutics, 111, 674–706.

    CAS  Google Scholar 

  13. Elangbam, C. S., Lightfoot, R. M., Yoon, L. W., Creech, D. R., Geske, R. S., Crumbley, C. W., et al. (2005). 5-Hydroxytryptamine (5HT) receptors in the heart valves of cynomolgus monkeys and Sprague-Dawley rats. Journal of Histochemistry and Cytochemistry, 53, 671–677.

    PubMed  CAS  Google Scholar 

  14. Vindis, C., D’Angelo, R., Mucher, E., Nègre-Salvayre, A., Parini, A., & Mialet-Perez, J. (2010). Essential role of TRPC1 channels in cardiomyoblasts hypertrophy mediated by 5-HT2A serotonin receptors. Biochemical and Biophysical Research Communications, 391, 979–983.

    PubMed  CAS  Google Scholar 

  15. Hutcheson, J. D., Setola, V., Roth, B. L., & Merryman, W. D. (2011). Serotonin receptors and heart valve disease—It was meant 2B. Pharmacology & Therapeutics, 132, 146–157.

    CAS  Google Scholar 

  16. Oyama, M. A., & Levy, R. J. (2010). Insights into serotonin signaling mechanisms associated with canine degenerative mitral valve disease. Journal of Veterinary Internal Medicine, 24, 27–36.

    PubMed  CAS  Google Scholar 

  17. Nebigil, C. G., Jaffré, F., Messaddeq, N., Hickel, P., Monassier, L., Launay, J. M., et al. (2003). Overexpression of the serotonin 5-HT2B receptor in heart leads to abnormal mitochondrial function and cardiac hypertrophy. Circulation, 107, 3223–3229.

    PubMed  CAS  Google Scholar 

  18. Launay, J. M. (2003). Serotonin and the cardiovascular system: Role of the serotoninergic 5-HT 2B receptor. Bulletin de l’Académie Nationale de Médecine, 187, 117–125.

    PubMed  CAS  Google Scholar 

  19. Xu, J., Jian, B., Chu, R., Lu, Z., Li, Q., Dunlop, J., et al. (2002). Serotonin mechanisms in heart valve disease, II: The 5-HT2 receptor and its signaling pathway in aortic valve interstitial cells. American Journal of Pathology, 161, 2209–2218.

    PubMed  CAS  Google Scholar 

  20. Mercado, C. P., & Kilic, F. (2010). Molecular mechanisms of SERT in platelets: Regulation of plasma serotonin levels. Molecular Interventions, 10, 231–241.

    PubMed  CAS  Google Scholar 

  21. Pavone, L. M., Mithbaokar, P., Mastellone, V., Avallone, L., Gaspar, P., Maharajan, V., et al. (2007). Fate map of serotonin transporter-expressing cells in developing mouse heart. Genesis, 45, 689–695.

    PubMed  CAS  Google Scholar 

  22. Pavone, L. M., Spina, A., Lo Muto, R., Santoro, D., Mastellone, V., & Avallone, L. (2008). Heart valve cardiomyocytes of mouse embryos express the serotonin transporter SERT. Biochemical and Biophysical Research Communications, 377, 419–422.

    PubMed  CAS  Google Scholar 

  23. Pavone, L. M., Spina, A., Rea, S., Santoro, D., Mastellone, V., Lombardi, P., et al. (2009). Serotonin transporter gene deficiency is associated with sudden death of newborn mice through activation of TGF-beta1 signalling. Journal of Molecular and Cellular Cardiology, 47, 691–697.

    PubMed  CAS  Google Scholar 

  24. Sari, Y., & Zhou, F. C. (2003). Serotonin and its transporter on proliferation of foetal heart cells. International Journal of Developmental Neuroscience, 21, 417–424.

    PubMed  CAS  Google Scholar 

  25. Côté, F., Fligny, C., Bayard, E., Launay, J. M., Gershon, M. D., Mallet, J., et al. (2007). Maternal serotonin is crucial for murine embryonic development. Proceedings of the National Academy of Sciences of the United States of America, 104, 329–334.

    PubMed  Google Scholar 

  26. Narboux-Nême, N., Pavone, L. M., Avallone, L., Zhuang, X., & Gaspar, P. (2008). Serotonin transporter transgenic (SERTcre) mouse line reveals developmental targets of serotonin specific reuptake inhibitors (SSRIs). Neuropharmacology, 55, 994–1005.

    PubMed  Google Scholar 

  27. Morecroft, I., Pang, L., Baranowska, M., Nilsen, M., Loughlin, L., Dempsie, Y., et al. (2010). In vivo effects of a combined 5-HT1B receptor/SERT antagonist in experimental pulmonary hypertension. Cardiovascular Research, 85, 593–603.

    PubMed  CAS  Google Scholar 

  28. Walther, D. J., Stahlberg, S., & Vowinckel, J. (2011). Novel roles for biogenic monoamines: From monoamines in transglutaminase-mediated post-translational protein modification to monoaminylation deregulation diseases. FEBS Journal, 278, 4740–4755.

    PubMed  CAS  Google Scholar 

  29. Person, A. D., Klewer, S. E., & Runyan, R. B. (2005). Cell biology of cardiac cushion development. International Review of Cytology, 243, 287–335.

    PubMed  CAS  Google Scholar 

  30. Latif, N., Sarathchandra, P., Taylor, P. M., Antoniw, J., & Yacoub, M. H. (2005). Localization and pattern of expression of extracellular matrix components in human heart valves. Journal of Heart Valve Disease, 14, 218–227.

    PubMed  Google Scholar 

  31. Lincoln, J., Alfieri, C. M., & Yutzey, K. E. (2004). Development of heart valve leaflets and supporting apparatus in chicken and mouse embryos. Developmental Dynamics, 230, 239–250.

    PubMed  CAS  Google Scholar 

  32. Akhtar, S., Meek, K. M., & James, V. (1999). Ultrastructure abnormalities in proteoglycans, collagen fibrils, and elastic fibers in normal and myxomatous mitral valve chordae tendineae. Cardiovascular Pathology, 8, 191–201.

    PubMed  CAS  Google Scholar 

  33. Hinton, R. B, Jr, Lincoln, J., Deutsch, G. H., Osinska, H., Manning, P. B., Benson, D. W., et al. (2006). Extracellular matrix remodelling and organization in developing and diseased aortic valves. Circulation Research, 98, 1431–1438.

    PubMed  CAS  Google Scholar 

  34. Markwald, R. R., Norris, R. A., Moreno-Rodriguez, R., & Levine, R. A. (2010). Developmental basis of adult cardiovascular diseases: Valvular heart diseases. Annals of the New York Academy of Sciences, 1188, 177–183.

    PubMed  Google Scholar 

  35. Cripe, L., Andelfinger, G., Martin, L. J., Shooner, K., & Benson, D. V. (2004). Bicuspid aortic valve is heritable. Journal of the American College of Cardiology, 44, 138–143.

    PubMed  Google Scholar 

  36. Lincoln, J., Lange, A. W., & Yutzey, K. E. (2006). Hearts and bones: Shared regulatory mechanisms in heart valve, cartilage, tendon, and bone development. Developmental Biology, 294, 292–302.

    PubMed  CAS  Google Scholar 

  37. O’Brien, K. D. (2007). Epidemiology and genetics of calcific aortic valve disease. Journal of Investigative Medicine, 55, 284–291.

    PubMed  Google Scholar 

  38. Weismann, C. G., & Gelb, B. D. (2007). The genetics of congenital heart disease: A review of recent developments. Current Opinion in Cardiology, 22, 200–206.

    PubMed  Google Scholar 

  39. Ng, C. M., Cheng, A., Myers, L. A., Martinez-Murillo, F., Jie, C., Bedja, D., et al. (2004). TGF-beta-dependent pathogenesis of mitral valve prolapse in a mouse model of Marfan syndrome. Journal of Clinical Investigation, 114, 1586–1592.

    PubMed  CAS  Google Scholar 

  40. de Lange, F. J., Moorman, A. F., Anderson, R. H., Männer, J., Soufan, A. T., de Gier-de Vries, C., et al. (2004). Lineage and morphogenetic analysis of the cardiac valves. Circulation Research, 95, 645–654.

    PubMed  Google Scholar 

  41. Olson, E. N. (2006). Gene regulatory networks in the evolution and development of the heart. Science, 313, 1922–1927.

    PubMed  CAS  Google Scholar 

  42. Joziasse, I. C., van de Smagt, J. J., Smith, K., Bakkers, J., Sieswerda, G. J., Mulder, B. J., et al. (2008). Genes in congenital heart disease: Atrioventricular valve formation. Basic Research in Cardiology, 103, 216–227.

    PubMed  CAS  Google Scholar 

  43. Walker, G. A., Masters, K. S., Shah, D. N., Anseth, K. S., & Leinwand, L. A. (2004). Valvular myofibroblast activation by transforming growth factor-beta: Implications for pathological extracellular matrix remodeling in heart valve disease. Circulation Research, 95, 253–260.

    PubMed  CAS  Google Scholar 

  44. Teekakirikul, P., Eminaga, S., Toka, O., Alcalai, R., Wang, L., Wakimoto, H., et al. (2010). Cardiac fibrosis in mice with hypertrophic cardiomyopathy is mediated by non-myocyte proliferation and requires Tgf-β. Journal of Clinical Investigation, 120, 3520–3529.

    PubMed  CAS  Google Scholar 

  45. Massagué, J. (2012). TGF-β signaling in development and disease. FEBS Letters, 586, 1833.

    PubMed  Google Scholar 

  46. Doyle, J. J., Gerber, E. E., & Dietz, H. C. (2012). Matrix-dependent perturbation of TGFβ signaling and disease. FEBS Letters, 586, 2003–2015.

    PubMed  CAS  Google Scholar 

  47. ten DiJike, P., & Hill, C. S. (2004). New insights into TGF-beta-Smad signalling. Trends in Biochemical Sciences, 29, 265–273.

    Google Scholar 

  48. Xu, P., Liu, J., & Derynck, R. (2012). Post-translational regulation of TGF-β receptor and Smad signaling. FEBS Letters, 586, 1871–1884.

    PubMed  CAS  Google Scholar 

  49. Euler-Taimor, G., & Heger, J. (2006). The complex pattern of SMAD signaling in the cardiovascular system. Cardiovascular Research, 69, 15–25.

    PubMed  CAS  Google Scholar 

  50. Verrecchia, F., Vindevoghel, L., Lechleider, R. J., Uitto, J., Roberts, A. B., & Mauviel, A. (2001). Smad3/AP-1 interactions control transcriptional responses to TGF-beta in a promoter-specific manner. Oncogene, 20, 3332–3340.

    PubMed  CAS  Google Scholar 

  51. Chen, S., Kulik, M., & Lechleider, R. J. (2003). Smad proteins regulate transcriptional induction of the SM22alpha gene by TGF-beta. Nucleic Acids Research, 31, 1302–1310.

    PubMed  CAS  Google Scholar 

  52. Kuruvilla, L., Nair, R. R., Umashankar, P. R., Lal, A. V., & Kartha, C. C. (2007). Endocardial endothelial cells stimulate proliferation and collagen synthesis of cardiac fibroblasts. Cell Biochemistry and Biophysics, 47, 65–72.

    PubMed  CAS  Google Scholar 

  53. Wilkes, M. C., Murphy, S. J., Garamszegi, N., & Leof, E. B. (2003). Cell-type-specific activation of PAK2 by transforming growth factor beta independent of Smad2 and Smad3. Molecular and Cellular Biology, 23, 8878–8889.

    PubMed  CAS  Google Scholar 

  54. Hough, C., Radu, M., & Doré, J. J. (2012). Tgf-beta induced Erk phosphorylation of smad linker region regulates smad signaling. PLoS One, 7, e42513.

    PubMed  CAS  Google Scholar 

  55. Dabek, J., Kułach, A., Monastyrska-Cup, B., & Gasior, Z. (2006). Transforming growth factor beta and cardiovascular diseases: The other facet of the ‘protective cytokine’. Pharmacological Reports, 58, 799–805.

    PubMed  CAS  Google Scholar 

  56. Bujak, M., & Frangogiannis, N. G. (2007). The role of TGF-beta signaling in myocardial infarction and cardiac remodelling. Cardiovascular Research, 74, 184–195.

    PubMed  CAS  Google Scholar 

  57. Yue, J., Frey, R. S., & Mulder, K. M. (1999). Cross-talk between the Smad1 and Ras/MEK signaling pathways for TGFbeta. Oncogene, 18, 2033–2037.

    PubMed  CAS  Google Scholar 

  58. Schmierer, B., & Hill, C. S. (2007). TGFbeta-SMAD signal transduction: Molecular specificity and functional flexibility. Nature Reviews Molecular Cell Biology, 8, 970–982.

    PubMed  CAS  Google Scholar 

  59. Cushing, M. C., Liao, J. T., & Anseth, K. S. (2005). Activation of valvular interstitial cells is mediated by transforming growth factor-beta1 interactions with matrix molecules. Matrix Biology, 24, 428–437.

    PubMed  CAS  Google Scholar 

  60. Khan, R., & Sheppard, R. (2006). Fibrosis in heart disease: Understanding the role of transforming growth factor-beta in cardiomyopathy, valvular disease and arrhythmia. Immunology, 118, 10–24.

    PubMed  CAS  Google Scholar 

  61. Watkins, S. J., Jonker, L., & Arthur, H. M. (2006). A direct interaction between TGFbeta activated kinase 1 and the TGFbeta type II receptor: Implications for TGFbeta signalling and cardiac hypertrophy. Cardiovascular Research, 69, 432–439.

    PubMed  CAS  Google Scholar 

  62. Chiu, Y. N., Norris, R. A., Mahler, G., Recknagel, A., & Butcher, J. T. (2010). Transforming growth factor β, bone morphogenetic protein, and vascular endothelial growth factor mediate phenotype maturation and tissue remodeling by embryonic valve progenitor cells: Relevance for heart valve tissue engineering. Tissue Engineering Part A, 16, 3375–3383.

    PubMed  CAS  Google Scholar 

  63. Cote, F., Fligny, C., Fromes, Y., Mallet, J., & Vodjdani, G. (2004). Recent advances in understanding serotonin regulation of cardiovascular function. Trends in Molecular Medicine, 10, 232–238.

    PubMed  CAS  Google Scholar 

  64. Yavarone, M. S., Shuey, D. L., Tamir, H., Sadler, T. W., & Lauder, J. M. (1993). Serotonin and cardiac morphogenesis in the mouse embryo. Teratology, 47, 573–584.

    PubMed  CAS  Google Scholar 

  65. Gaspar, P., Cases, O., & Maroteaux, L. (2003). The developmental role of serotonin: News from mouse molecular genetics. Nature Reviews Neuroscience, 4, 1002–1012.

    PubMed  CAS  Google Scholar 

  66. Connolly, H. M., Crary, J. L., McGoon, M. D., Hensrud, D. D., Edwards, B. S., Edwards, W. D., et al. (1997). Valvular heart disease associated with fenfluramine-phentermine. New England Journal of Medicine, 337, 581–588.

    PubMed  CAS  Google Scholar 

  67. Horvath, J., Fross, R. D., Kleiner-Fisman, G., Lerch, R., Stalder, H., Liaudat, S., et al. (2004). Severe multivalvular heart disease: A new complication of the ergot derivative dopamine agonists. Movement Disorders, 19, 656–662.

    PubMed  Google Scholar 

  68. Mekontso-Dessap, A., Brouri, F., Pascal, O., Lechat, P., Hanoun, N., Lanfumey, L., et al. (2006). Deficiency of the 5-hydroxytryptamine transporter gene leads to cardiac fibrosis and valvulopathy in mice. Circulation, 13, 81–89.

    Google Scholar 

  69. Rothman, R. B., & Baumann, M. H. (2009). Serotonergic drugs and valvular heart disease. Expert Opinion on Drug Safety, 8, 317–329.

    PubMed  CAS  Google Scholar 

  70. Sadler, T. W. (2011). Selective serotonin reuptake inhibitors (SSRIs) and heart defects: Potential mechanisms for the observed associations. Reproductive Toxicology, 32, 484–489.

    PubMed  CAS  Google Scholar 

  71. Ventetuolo, C. E., Barr, R. G., Bluemke, D. A., Jain, A., Delaney, J. A., Hundley, W. G., et al. (2012). Selective serotonin reuptake inhibitor use is associated with right ventricular structure and function: The MESA-right ventricle study. PLoS One, 7v, e30480.

    Google Scholar 

  72. Pavone, L. M., Rea, S., Trapani, F., De Pasquale, V., Tafuri, S., Papparella, S., et al. (2012). Role of serotonergic system in the pathogenesis of fibrosis in canine idiopathic inflammatory myopathies. Neuromuscular Disorders, 22, 549–557.

    PubMed  Google Scholar 

  73. Moller, J. E., Connolly, H. M., Rubin, J., Seward, J. B., Modesto, K., & Pellikka, P. A. (2003). Factors associated with progression of carcinoid heart disease. New England Journal of Medicine, 348, 1005–1015.

    PubMed  Google Scholar 

  74. Gustafsson, B. I., Tømmerås, K., Nordrum, I., Loennechen, J. P., Brunsvik, A., Solligård, E., et al. (2005). Long-term serotonin administration induces heart valve disease in rats. Circulation, 111, 1517–1522.

    PubMed  CAS  Google Scholar 

  75. Ladich, E., Nakano, M., Carter-Monroe, N., & Virmani, R. (2011). Pathology of calcific aortic stenosis. Future Cardiology, 7, 629–642.

    PubMed  Google Scholar 

  76. Chen, J. H., & Simmons, C. A. (2011). Cell-matrix interactions in the pathobiology of calcific aortic valve disease: Critical roles for matricellular, matricrine, and matrix mechanics cues. Circulation Research, 108, 1510–1524.

    PubMed  CAS  Google Scholar 

  77. Mohler, E. R., Gannon, F., Reynolds, C., Zimmerman, R., Keane, M. G., & Kaplan, F. S. (2001). Bone formation and inflammation in cardiac valves. Circulation, 103, 1522–1528.

    PubMed  Google Scholar 

  78. Schoen, F. J. (2005). Cardiac valves and valvular pathology: Update on function, disease, repair, and replacement. Cardiovascular Pathology, 14, 189–194.

    PubMed  Google Scholar 

  79. Collet, C., Schiltz, C., Geoffroy, V., Maroteaux, L., Launay, J. M., & de Vernejoul, M. C. (2008). The serotonin 5-HT2B receptor controls bone mass via osteoblast recruitment and proliferation. FASEB Journal, 22, 418–427.

    PubMed  CAS  Google Scholar 

  80. Roy, A., Brand, N. J., & Yacoub, M. H. (2000). Expression of 5-hydroxytryptamine receptor subtype messenger RNA in interstitial cells from human heart valves. Journal of Heart Valve Disease, 9, 256–261.

    PubMed  CAS  Google Scholar 

  81. Fitzgerald, L. W., Burn, T. C., Brown, B. S., Patterson, J. P., Corjay, M. H., Valentine, P. A., et al. (2000). Possible role of valvular serotonin 5-HT(2B) receptors in the cardiopathy associated with fenfluramine. Molecular Pharmacology, 57, 75–81.

    PubMed  CAS  Google Scholar 

  82. Jian, B., Xu, J., Connolly, J., Savani, R. C., Narula, N., Liang, B., et al. (2002). Serotonin mechanisms in heart valve disease, I: Serotonin-induced up-regulation of transforming growth factor-beta1 via G-protein signal transduction in aortic valve interstitial cells. American Journal of Pathology, 161, 2111–2121.

    PubMed  CAS  Google Scholar 

  83. Akat, K., Borggrefe, M., & Kaden, J. J. (2009). Aortic valve calcification: Basic science to clinical practice. Heart, 95, 616–623.

    PubMed  CAS  Google Scholar 

  84. Fabre, A., Marchal-Somme, J., Marchand-Adam, S., Quesnel, C., Borie, R., Dehoux, M., et al. (2008). Modulation of bleomycin-induced lung fibrosis by serotonin receptor antagonists in mice. European Respiratory Journal, 32, 426–436.

    PubMed  CAS  Google Scholar 

  85. Jaffre, F., Bonnin, P., Callebert, J., Debbabi, H., Setola, V., Doly, S., et al. (2009). Serotonin and angiotensin receptors in cardiac fibroblasts coregulate adrenergic-dependent cardiac hypertrophy. Circulation Research, 104, 113–123.

    PubMed  CAS  Google Scholar 

  86. Hutcheson, J. D., Ryzhova, L. M., Setola, V., & Merryman, W. D. (2012). 5-HT(2B) antagonism arrests non-canonical TGF-β1-induced valvular myofibroblast differentiation. Journal of Molecular and Cellular Cardiology, 53, 707–714.

    PubMed  CAS  Google Scholar 

  87. Kasho, M., Sakai, M., Sasahara, T., Anami, Y., Matsumura, T., Takemura, T., et al. (1998). Serotonin enhances the production of type IV collagen by human mesangial cells. Kidney International, 54, 1083–1092.

    PubMed  CAS  Google Scholar 

  88. Grewal, J. S., Mukhin, Y. V., Garnovskaya, M. N., Raymond, J. R., & Greene, E. L. (1999). Serotonin 5-HT2A receptor induces TGF-beta1 expression in mesangial cells via ERK: Proliferative and fibrotic signals. American Journal of Physiology, 276, F922–F930.

    PubMed  CAS  Google Scholar 

  89. Liu, Y., Suzuki, Y. J., Day, R. M., & Fanburg, B. L. (2004). Rho kinase-induced nuclear translocation of ERK1/ERK2 in smooth muscle cell mitogenesis caused by serotonin. Circulation Research, 95, 579–586.

    PubMed  CAS  Google Scholar 

  90. Leivonen, S. K., Häkkinen, L., Liu, D., & Kähäri, V. M. (2005). Smad3 and extracellular signal-regulated kinase 1/2 coordinately mediate transforming growth factor-beta-induced expression of connective tissue growth factor in human fibroblasts. The Journal of Investigative Dermatology, 124, 1162–1169.

    PubMed  CAS  Google Scholar 

  91. Liu, X., Sun, S. Q., Hassid, A., & Ostrom, R. S. (2006). cAMP inhibits transforming growth factor-beta-stimulated collagen synthesis via inhibition of extracellular signal-regulated kinase 1/2 and Smad signaling in cardiac fibroblasts. Molecular Pharmacology, 70, 1992–2003.

    PubMed  CAS  Google Scholar 

  92. Samarakoon, R., Higgins, S. P., Higgins, C. E., & Higgins, P. J. (2008). TGF-beta1-induced plasminogen activator inhibitor-1 expression in vascular smooth muscle cells requires pp 60(c-src)/EGFR(Y845) and Rho/ROCK signaling. Journal of Molecular and Cellular Cardiology, 44, 527–538.

    PubMed  CAS  Google Scholar 

  93. Zhang, F., Endo, S., Cleary, L. J., Eskin, A., & Byrne, J. H. (1997). Role of transforming growth factor-beta in long-term synaptic facilitation in Aplysia. Science, 275, 1318–1320.

    PubMed  CAS  Google Scholar 

  94. Pousset, F., Fournier, J., Legoux, P., Keane, P., Shire, D., & Soubrie, P. (1996). Effect of serotonin on cytokine mRNA expression in rat hippocampal astrocytes. Molecular Brain Research, 38, 54–62.

    PubMed  CAS  Google Scholar 

  95. Buskohl, P. R., Sun, M. L., Thompson, R. P., & Butcher, J. T. (2012). Serotonin potentiates transforming growth factor-beta3 induced biomechanical remodeling in avian embryonic atrioventricular valves. PLoS One, 7, e42527.

    PubMed  CAS  Google Scholar 

  96. Giancotti, F. G., & Ruoslahti, E. (1999). Integrin signaling. Science, 285, 1028–1032.

    PubMed  CAS  Google Scholar 

  97. Chungho, K., Ye, F., & Ginsberg, M. H. (2011). Regulation of integrin activation. Annual Review of Cell and Developmental Biology, 27, 321–345.

    Google Scholar 

  98. Valencik, M. L., Zhang, D., Punske, B., Hu, P., McDonald, J. A., & Litwin, S. E. (2006). Integrin activation in the heart: A link between electrical and contractile dysfunction? Circulation Research, 99, 1403–1410.

    PubMed  CAS  Google Scholar 

  99. Li, R., Wu, Y., Manso, A. M., Gu, Y., Liao, P., Israeli, S., et al. (2012). β1 integrin gene excision in the adult murine cardiac myocyte causes defective mechanical and signaling responses. American Journal of Pathology, 180, 952–962.

    PubMed  CAS  Google Scholar 

  100. Ieda, M., Tsuchihashi, T., Ivey, K. N., Ross, R. S., Hong, T. T., Shaw, R. M., et al. (2009). Cardiac fibroblasts regulate myocardial proliferation through beta1 integrin signaling. Developmental Cell, 16, 233–244.

    PubMed  CAS  Google Scholar 

  101. Latif, N., Sarathchandra, P., Taylor, P. M., Antoniw, J., & Yacoub, M. H. (2005). Molecules mediating cell-ECM and cell–cell communication in human heart valves. Cell Biochemistry and Biophysics, 43, 275–287.

    PubMed  CAS  Google Scholar 

  102. Carver, W., Price, R. L., Raso, D. S., Terracio, L., & Borg, T. K. (1994). Distribution of beta-1 integrin in the developing rat heart. Journal of Histochemistry and Cytochemistry, 42, 167–175.

    PubMed  CAS  Google Scholar 

  103. Elsherif, L., Huang, M. S., Shai, S. Y., Yang, Y., Li, R. Y., Chun, J., et al. (2008). Combined deficiency of dystrophin and beta1 integrin in the cardiac myocyte causes myocardial dysfunction, fibrosis and calcification. Circulation Research, 102, 1109–1117.

    PubMed  CAS  Google Scholar 

  104. Lal, H., Verma, S. K., Foster, D. M., Golden, H. B., Reneau, J. C., Watson, L. E., et al. (2009). Integrins and proximal signaling mechanisms in cardiovascular disease. Frontiers in Bioscience, 14, 2307–2334.

    CAS  Google Scholar 

  105. Arnaout, M. A., Goodman, S. L., & Xiong, J. P. (2007). Structure and mechanics of integrin-based cell adhesion. Current Opinion in Cell Biology, 19, 495–507.

    PubMed  CAS  Google Scholar 

  106. DeMaso, C. R., Kovacevic, I., Uzun, A., & Cram, E. J. (2011). Structural and functional evaluation of C. elegans filamins FLN-1 and FLN-2. PLoS One, 6, e22428.

    PubMed  CAS  Google Scholar 

  107. van der Flier, A., & Sonnenberg, A. (2001). Structural and functional aspects of filamins. Biochimica et Biophysica Acta, 1538, 99–117.

    PubMed  Google Scholar 

  108. Kim, H., Sengupta, A., Glogauer, M., & McCulloch, C. A. (2008). Filamin A regulates cell spreading and survival via beta1 integrins. Experimental Cell Research, 314, 834–846.

    PubMed  CAS  Google Scholar 

  109. de Vlaming, A., Sauls, K., Hajdu, Z., Visconti, R. P., Mehesz, A. N., Levine, R. A., et al. (2012). Atrioventricular valve development: New perspectives on an old theme. Differentiation, 84, 103–116.

    PubMed  Google Scholar 

  110. Norris, R. A., Moreno-Rodriguez, R., Wessels, A., Merot, J., Bruneval, P., Chester, A. H., et al. (2010). Expression of the familial cardiac valvular dystrophy gene, filamin-A, during heart morphogenesis. Developmental Dynamics, 239, 2118–2127.

    PubMed  CAS  Google Scholar 

  111. Watts, S. W., Priestley, J. R., & Thompson, J. M. (2009). Serotonylation of vascular proteins important to contraction. PLoS One, 4, e5682.

    PubMed  Google Scholar 

  112. Khew, S. T., Panengad, P. P., Raghunath, M., & Tong, Y. W. (2010). Characterization of amine donor and acceptor sites for tissue type transglutaminase using a sequence from the C-terminus of human fibrillin-1 and the N-terminus of osteonectin. Biomaterials, 31, 4600–4608.

    PubMed  CAS  Google Scholar 

  113. Hummerich, R., Thumfart, J. O., Findeisen, P., Bartsch, D., & Schloss, P. (2012). Transglutaminase-mediated transamidation of serotonin, dopamine and noradrenaline to fibronectin: Evidence for a general mechanism of monoaminylation. FEBS Letters, 586, 3421–3428.

    PubMed  CAS  Google Scholar 

  114. Sane, D. C., Kontos, J. L., & Greenberg, C. S. (2007). Roles of transglutaminases in cardiac and vascular diseases. Frontiers in Bioscience, 12, 2530–2545.

    PubMed  CAS  Google Scholar 

  115. Zhu, G., Chen, H., & Zhang, W. (2011). Phenotype switch of vascular smooth muscle cells after siRNA silencing of filamin. Cell Biochemistry and Biophysics, 61, 47–52.

    PubMed  CAS  Google Scholar 

  116. Lardeux, A., Kyndt, F., Lecointe, S., Marec, H. L., Merot, J., Schott, J. J., et al. (2011). Filamin-a-related myxomatous mitral valve dystrophy: Genetic, echocardiographic and functional aspects. Journal of Cardiovascular Translational Research, 4, 748–756.

    PubMed  Google Scholar 

  117. Kyndt, F., Gueffet, J. P., Probst, V., Jaafar, P., Legendre, A., Le Bouffant, F., et al. (2007). Mutations in the gene encoding filamin A as a cause for familial cardiac valvular dystrophy. Circulation, 115, 40–49.

    PubMed  CAS  Google Scholar 

  118. Sasaki, A., Masuda, Y., Ohta, Y., Ikeda, K., & Watanabe, K. (2001). Filamin associates with Smads and regulates transforming growth factor-beta signaling. Journal of Biological Chemistry, 276, 17871–17877.

    PubMed  CAS  Google Scholar 

  119. Scott, M. G., Pierotti, V., Storez, H., Lindberg, E., Thuret, A., Muntaner, O., et al. (2006). Cooperative regulation of extracellular signal-regulated kinase activation and cell shape change by filamin A and beta-arrestins. Molecular and Cellular Biology, 26, 3432–3445.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We apologize to those whose work could not be cited in this review due to space limitations. This work was supported by the PRIN 2009, MIUR (Rome, Italy), (20097YYPRS_002) grant to L. M. Pavone, and AHA (11SDG5270006) and The Foundation Leducq (Paris, France) grant (Transatlantic Mitral Network of Excellence 07CVD04) to R.A. Norris.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Michele Pavone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavone, L.M., Norris, R.A. Distinct Signaling Pathways Activated by “Extracellular” and “Intracellular” Serotonin in Heart Valve Development and Disease. Cell Biochem Biophys 67, 819–828 (2013). https://doi.org/10.1007/s12013-013-9606-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-013-9606-8

Keywords

Navigation