Skip to main content
Log in

Vinorelbine-Induced Oxidative Injury in Human Endothelial Cells Mediated by AMPK/PKC/NADPH/NF-κB Pathways

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Vinorelbine tartrate (VNR), a semi-synthetic vinca alkaloid acquired from vinblastine, has extensively been used as an anticancer agent. However, VNR-induced oxidative damage may cause several side effects, such as venous irritation, vascular pain, and necrotizing vasculitis, thereby repressing clinical treatment efficiency. The molecular mechanisms underlying the induced oxidative stress in endothelial cells are still largely unknown. This study was designed to test the hypothesis that VNR induces oxidative injury through modulation of AMP-activated protein kinase (AMPK) and possible mechanisms were then explored. Human umbilical vein endothelial cells (HUVECs) were treated with VNR (5–0.625 μM) to produce oxidative damage. The VNR-mediated AMPK, PKC, and NADPH oxidase expressions were investigated by western blotting. Furthermore, several oxidative stress-induced oxidative damage markers as well as pro-inflammatory responses were also investigated. VNR treatment resulted in dephosphorylation of AMPK, which in turn led to an activation of NADPH oxidase by PKC; however, the phenomena were repressed by AICAR (an agonist of AMPK). Furthermore, VNR suppressed Akt/eNOS and enhanced p38 mitogen-activated protein kinase (MAPK), which in turn activated the NF-κB pathway. Furthermore, VNR facilitated several pro-inflammatory events, such as the adherence of monocytic THP-1 cells to HUVECs, pro-inflammatory cytokines release, and overexpression of adhesion molecular. Our results highlight a possible molecular mechanism for VNR-mediated endothelial dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

VNR:

Vinorelbine tartrate

ROS:

Reactive oxygen species

AMPK:

AMP-activated protein kinase

PKC:

Protein kinase C

MAPK:

Mitogen-activated protein kinase

DPI:

Diphenyleneiodonium

EDTA:

Ethylene diaminotetraacetic acid

VCAM-1:

Vascular cell adhesion molecule-1

ICAM-1:

Intercellular adhesion molecules

IL-8:

Interleukin-8

NO:

Nitric oxide

eNOS:

Endothelial NO synthase

References

  1. Budman, D. R. (1992). New vinca alkaloids and related compounds. Seminars in Oncology, 19(6), 639–645.

    PubMed  CAS  Google Scholar 

  2. Marty, M., Extra, J. M., Dieras, V., Giacchetti, S., Ohana, S., & Espie, M. (1992). A review of the antitumour activity of vinorelbine in breast cancer. Drugs, 44(Suppl 4), 29–35. Discussion: 66–29.

    Article  PubMed  CAS  Google Scholar 

  3. Sorensen, J. B. (1992). Vinorelbine: A review of its antitumour activity in lung cancer. Drugs, 44(Suppl 4), 60–65. Discussion: 66–69.

    Article  PubMed  Google Scholar 

  4. Jordan, M. A., & Wilson, L. (2004). Microtubules as a target for anticancer drugs. Nature Reviews Cancer, 4(4), 253–265.

    Article  PubMed  CAS  Google Scholar 

  5. Ngan, V. K., Bellman, K., Hill, B. T., Wilson, L., & Jordan, M. A. (2001). Mechanism of mitotic block and inhibition of cell proliferation by the semisynthetic Vinca alkaloids vinorelbine and its newer derivative vinflunine. Molecular Pharmacology, 60(1), 225–232.

    PubMed  CAS  Google Scholar 

  6. Rittenberg, C. N., Gralla, R. J., & Rehmeyer, T. A. (1995). Assessing and managing venous irritation associated with vinorelbine tartrate (Navelbine). Oncology Nursing Forum, 22(4), 707–710.

    PubMed  CAS  Google Scholar 

  7. Yamada, T., Egashira, N., Imuta, M., Yano, T., Yamauchi, Y., Watanabe, H., et al. (2010). Role of oxidative stress in vinorelbine-induced vascular endothelial cell injury. Free Radical Biology and Medicine, 48(1), 120–127.

    Article  PubMed  CAS  Google Scholar 

  8. Dong, Y., Zhang, M., Wang, S., Liang, B., Zhao, Z., Liu, C., et al. (2010). Activation of AMP-activated protein kinase inhibits oxidized LDL-triggered endoplasmic reticulum stress in vivo. Diabetes, 59(6), 1386–1396.

    Article  PubMed  CAS  Google Scholar 

  9. Hardie, D. G. (2007). AMP-activated/SNF1 protein kinases: Conserved guardians of cellular energy. Nature Reviews Molecular Cell Biology, 8(10), 774–785.

    Article  PubMed  CAS  Google Scholar 

  10. Fisslthaler, B., & Fleming, I. (2009). Activation and signaling by the AMP-activated protein kinase in endothelial cells. Circulation Research, 105(2), 114–127.

    Article  PubMed  CAS  Google Scholar 

  11. Michell, B. J., Chen, Z., Tiganis, T., Stapleton, D., Katsis, F., Power, D. A., et al. (2001). Coordinated control of endothelial nitric-oxide synthase phosphorylation by protein kinase C and the cAMP-dependent protein kinase. Journal of Biological Chemistry, 276(21), 17625–17628.

    Article  PubMed  CAS  Google Scholar 

  12. Sag, D., Carling, D., Stout, R. D., & Suttles, J. (2008). Adenosine 5′-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype. Journal of Immunology, 181(12), 8633–8641.

    CAS  Google Scholar 

  13. Ceolotto, G., Gallo, A., Papparella, I., Franco, L., Murphy, E., Iori, E., et al. (2007). Rosiglitazone reduces glucose-induced oxidative stress mediated by NAD(P)H oxidase via AMPK-dependent mechanism. Arteriosclerosis, Thrombosis, and Vascular Biology, 27(12), 2627–2633.

    Article  PubMed  CAS  Google Scholar 

  14. Griendling, K. K., Sorescu, D., & Ushio-Fukai, M. (2000). NAD(P)H oxidase: Role in cardiovascular biology and disease. Circulation Research, 86(5), 494–501.

    PubMed  CAS  Google Scholar 

  15. Li, J. M., & Shah, A. M. (2004). Endothelial cell superoxide generation: Regulation and relevance for cardiovascular pathophysiology. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 287(5), R1014–R1030.

    Article  PubMed  CAS  Google Scholar 

  16. Sugimoto, K., Ishibashi, T., Sawamura, T., Inoue, N., Kamioka, M., Uekita, H., et al. (2009). LOX-1-MT1-MMP axis is crucial for RhoA and Rac1 activation induced by oxidized low-density lipoprotein in endothelial cells. Cardiovascular Research, 84(1), 127–136.

    Article  PubMed  CAS  Google Scholar 

  17. Li, D., & Mehta, J. L. (2009). Intracellular signaling of LOX-1 in endothelial cell apoptosis. Circulation Research, 104(5), 566–568.

    Article  PubMed  CAS  Google Scholar 

  18. Navarra, T., Del Turco, S., Berti, S., & Basta, G. (2010). The lectin-like oxidized low-density lipoprotein receptor-1 and its soluble form: Cardiovascular implications. Journal of Atherosclerosis and Thrombosis, 17(4), 317–331.

    Article  PubMed  CAS  Google Scholar 

  19. Tesfamariam, B., & DeFelice, A. F. (2007). Endothelial injury in the initiation and progression of vascular disorders. Vascular Pharmacology, 46(4), 229–237.

    Article  PubMed  CAS  Google Scholar 

  20. Jaffe, E. A., Nachman, R. L., Minick, C. R., & Becker, C. G. (1973). Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. Journal of Clinical Investigation, 52(11), 2745–2756.

    Article  PubMed  CAS  Google Scholar 

  21. Hardie, D. G., & Carling, D. (1997). The AMP-activated protein kinase–fuel gauge of the mammalian cell? European Journal of Biochemistry, 246(2), 259–273.

    Article  PubMed  CAS  Google Scholar 

  22. Bey, E. A., Xu, B., Bhattacharjee, A., Oldfield, C. M., Zhao, X., Li, Q., et al. (2004). Protein kinase C delta is required for p47phox phosphorylation and translocation in activated human monocytes. Journal of Immunology, 173(9), 5730–5738.

    CAS  Google Scholar 

  23. Ceolotto, G., Papparella, I., Lenzini, L., Sartori, M., Mazzoni, M., Iori, E., et al. (2006). Insulin generates free radicals in human fibroblasts ex vivo by a protein kinase C-dependent mechanism, which is inhibited by pravastatin. Free Radical Biology and Medicine, 41(3), 473–483.

    Article  PubMed  CAS  Google Scholar 

  24. Chavakis, E., Dernbach, E., Hermann, C., Mondorf, U. F., Zeiher, A. M., & Dimmeler, S. (2001). Oxidized LDL inhibits vascular endothelial growth factor-induced endothelial cell migration by an inhibitory effect on the Akt/endothelial nitric oxide synthase pathway. Circulation, 103(16), 2102–2107.

    PubMed  CAS  Google Scholar 

  25. Amaravadi, R., & Thompson, C. B. (2005). The survival kinases Akt and Pim as potential pharmacological targets. Journal of Clinical Investigation, 115(10), 2618–2624.

    Article  PubMed  CAS  Google Scholar 

  26. Inoue, H., Tanabe, T., & Umesono, K. (2000). Feedback control of cyclooxygenase-2 expression through PPARgamma. Journal of Biological Chemistry, 275(36), 28028–28032.

    PubMed  CAS  Google Scholar 

  27. Ricote, M., Li, A. C., Willson, T. M., Kelly, C. J., & Glass, C. K. (1998). The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature, 391(6662), 79–82.

    Article  PubMed  CAS  Google Scholar 

  28. Robbesyn, F., Salvayre, R., & Negre-Salvayre, A. (2004). Dual role of oxidized LDL on the NF-kappaB signaling pathway. Free Radical Research, 38(6), 541–551.

    Article  PubMed  CAS  Google Scholar 

  29. Wang, X. F., Zhang, J. Y., Li, L., Zhao, X. Y., Tao, H. L., & Zhang, L. (2011). Metformin improves cardiac function in rats via activation of AMP-activated protein kinase. Clinical and Experimental Pharmacology and Physiology, 38(2), 94–101.

    Article  PubMed  Google Scholar 

  30. Mugabo, Y., Mukaneza, Y., & Renier, G. (2011). Palmitate induces C-reactive protein expression in human aortic endothelial cells. Relevance to fatty acid-induced endothelial dysfunction. Metabolism, 60(5), 640–648.

    Article  PubMed  CAS  Google Scholar 

  31. Zou, M. H., Hou, X. Y., Shi, C. M., Nagata, D., Walsh, K., & Cohen, R. A. (2002). Modulation by peroxynitrite of Akt- and AMP-activated kinase-dependent Ser1179 phosphorylation of endothelial nitric oxide synthase. Journal of Biological Chemistry, 277(36), 32552–32557.

    Article  PubMed  CAS  Google Scholar 

  32. Eid, A. A., Ford, B. M., Block, K., Kasinath, B. S., Gorin, Y., Ghosh-Choudhury, G., et al. (2010). AMP-activated protein kinase (AMPK) negatively regulates Nox4-dependent activation of p53 and epithelial cell apoptosis in diabetes. Journal of Biological Chemistry, 285(48), 37503–37512.

    Article  PubMed  CAS  Google Scholar 

  33. Alba, G., El Bekay, R., Alvarez-Maqueda, M., Chacon, P., Vega, A., Monteseirin, J., et al. (2004). Stimulators of AMP-activated protein kinase inhibit the respiratory burst in human neutrophils. FEBS Letters, 573(1–3), 219–225.

    Article  PubMed  CAS  Google Scholar 

  34. Kliewer, S. A., Umesono, K., Noonan, D. J., Heyman, R. A., & Evans, R. M. (1992). Convergence of 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors. Nature, 358(6389), 771–774.

    Article  PubMed  CAS  Google Scholar 

  35. Hu, E., Kim, J. B., Sarraf, P., & Spiegelman, B. M. (1996). Inhibition of adipogenesis through MAP kinase-mediated phosphorylation of PPAR gamma. Science, 274(5295), 2100–2103.

    Article  PubMed  CAS  Google Scholar 

  36. Moon, L., Jun, M. S., Kim, Y. M., Lee, Y. S., Kim, H. J., Seo, H. G., et al. (2011). 7, 8-didehydrocimigenol from Cimicifugae rhizoma inhibits TNF-alpha-induced VCAM-1 but not ICAM-1expression through upregulation of PPAR-gamma in human endothelial cells. Food and Chemical Toxicology, 49(1), 166–172.

    Article  Google Scholar 

  37. Chiba, Y., Ogita, T., Ando, K., & Fujita, T. (2001). PPARgamma ligands inhibit TNF-alpha-induced LOX-1 expression in cultured endothelial cells. Biochemical and Biophysical Research Communications, 286(3), 541–546.

    Article  PubMed  CAS  Google Scholar 

  38. Chen, X. P., Zhang, T. T., & Du, G. H. (2007). Lectin-like oxidized low-density lipoprotein receptor-1, a new promising target for the therapy of atherosclerosis? Cardiovascular Drug Reviews, 25(2), 146–161.

    Article  PubMed  CAS  Google Scholar 

  39. Baldwin, A. S., Jr. (1996). The NF-kappa B and I kappa B proteins: New discoveries and insights. Annual Review of Immunology, 14, 649–683.

    Article  PubMed  CAS  Google Scholar 

  40. Springer, T. A. (1994). Traffic signals for lymphocyte recirculation and leukocyte emigration: The multistep paradigm. Cell, 76(2), 301–314.

    Article  PubMed  CAS  Google Scholar 

  41. Hattori, Y., Suzuki, K., Hattori, S., & Kasai, K. (2006). Metformin inhibits cytokine-induced nuclear factor kappaB activation via AMP-activated protein kinase activation in vascular endothelial cells. Hypertension, 47(6), 1183–1188.

    Article  PubMed  CAS  Google Scholar 

  42. Gauvin, A., Pinguet, F., Poujol, S., Astre, C., & Bressolle, F. (2000). High-performance liquid chromatographic determination of vinorelbine in human plasma and blood: Application to a pharmacokinetic study. Journal of Chromatography B: Biomedical Sciences and Applications, 748(2), 389–399.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National Science Council, (NSC 98-2320-B-039-020-MY3, NSC 97-3111-B-075-001-MY3, 97-2320-B-075-003-MY3), China Medical University (CMU99-S-13), Taiwan, ROC. This study was supported in part by Taiwan Department of Health Clinical Trial and Research Center of Excellence (DOH100-TD-B-111-004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsiu-Chung Ou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsai, KL., Chiu, TH., Tsai, MH. et al. Vinorelbine-Induced Oxidative Injury in Human Endothelial Cells Mediated by AMPK/PKC/NADPH/NF-κB Pathways. Cell Biochem Biophys 62, 467–479 (2012). https://doi.org/10.1007/s12013-011-9333-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-011-9333-y

Keywords

Navigation