Skip to main content
Log in

NAD(P)H:Quinone Oxidoreductase 1 and its Potential Protective Role in Cardiovascular Diseases and Related Conditions

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

NAD(P)H:quinone oxidoreductase (NQO) represents a family of flavoproteins that catalyze the two-electron reduction of quinones and their derivatives. In mammalian systems, there are two members of NQO, namely, NQO1 and NQO2. NQO1 utilizes NAD(P)H, whereas NQO2 employs dihydronicotinamide riboside (NRH) as the electron donors. In addition to the well-documented action in reducing quinone compounds and preventing the formation of reactive oxygen species, NQO enzymes, especially NQO1 also possess other important biological activities. These include anti-inflammatory effects, direct scavenging of superoxide anion radicals, and stabilization of p53 and other tumor suppressors. Recently, multiple studies in animal models demonstrated a potential role for NQO1 in protecting against cardiovascular injury and related conditions, including atherogenesis, dyslipidemia, and insulin resistance. Functional gene polymorphisms have been identified in human NQO1 gene. Studies on the association between NQO1 gene polymorphisms and susceptibility to disease development also suggested a possible involvement of NQO1 in human cardiovascular diseases and metabolic syndrome. This review is intended to summarize the recent development regarding the biochemical properties and molecular regulation of NQO1 and its potential beneficial role in cardiovascular diseases and related conditions, including metabolic syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ernster, L., & Lindberg, O. (1958). Animal mitochondria. Annual Review of Physiology, 20, 13–42.

    Article  PubMed  CAS  Google Scholar 

  2. Jaiswal, A. K., Burnett, P., Adesnik, M., & McBride, O. W. (1990). Nucleotide and deduced amino acid sequence of a human cDNA (NQO2) corresponding to a second member of the NAD(P)H:quinone oxidoreductase gene family. Extensive polymorphism at the NQO2 gene locus on chromosome 6. Biochemistry, 29, 1899–1906.

    Article  PubMed  CAS  Google Scholar 

  3. Jaiswal, A. K. (1994). Human NAD(P)H:quinone oxidoreductase2. Gene structure, activity, and tissue-specific expression. J Biol Chem, 269, 14502–14508.

    PubMed  CAS  Google Scholar 

  4. Zhao, Q., Yang, X. L., Holtzclaw, W. D., & Talalay, P. (1997). Unexpected genetic and structural relationships of a long-forgotten flavoenzyme to NAD(P)H:quinone reductase (DT-diaphorase). Proceedings of the National Academy of Sciences of the United States of America, 94, 1669–1674.

    Article  PubMed  CAS  Google Scholar 

  5. Liao, S., & Williams-Ashman, H. G. (1961). Enzymatic oxidation of some non-phosphorylated derivatives of dihydronicotinamide. Biochemical and Biophysical Research Communications, 4, 208–213.

    Article  PubMed  CAS  Google Scholar 

  6. Dinkova-Kostova, A. T., & Talalay, P. (2010). NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1), a multifunctional antioxidant enzyme and exceptionally versatile cytoprotector. Archives of Biochemistry and Biophysics, 501, 116–123.

    Article  PubMed  CAS  Google Scholar 

  7. Ross, D. (2004). Quinone reductases multitasking in the metabolic world. Drug Metabolism Reviews, 36, 639–654.

    Article  PubMed  CAS  Google Scholar 

  8. Seow, H. A., Penketh, P. G., Belcourt, M. F., Tomasz, M., Rockwell, S., & Sartorelli, A. C. (2004). Nuclear overexpression of NAD(P)H:quinone oxidoreductase 1 in Chinese hamster ovary cells increases the cytotoxicity of mitomycin C under aerobic and hypoxic conditions. J Biol Chem, 279, 31606–31612.

    Article  PubMed  CAS  Google Scholar 

  9. Adikesavan, A. K., Barrios, R., & Jaiswal, A. K. (2007). In vivo role of NAD(P)H:quinone oxidoreductase 1 in metabolic activation of mitomycin C and bone marrow cytotoxicity. Cancer Research, 67, 7966–7971.

    Article  PubMed  CAS  Google Scholar 

  10. Siegel, D., Gustafson, D. L., Dehn, D. L., Han, J. Y., Boonchoong, P., Berliner, L. J., et al. (2004). NAD(P)H:quinone oxidoreductase 1: role as a superoxide scavenger. Molecular Pharmacology, 65, 1238–1247.

    Article  PubMed  CAS  Google Scholar 

  11. Zhu, H., Jia, Z., Mahaney, J. E., Ross, D., Misra, H. P., Trush, M. A., et al. (2007). The highly expressed and inducible endogenous NAD(P)H:quinone oxidoreductase 1 in cardiovascular cells acts as a potential superoxide scavenger. Cardiovascular Toxicology, 7, 202–211.

    Article  PubMed  CAS  Google Scholar 

  12. Cao, Z., & Li, Y. (2004). The chemical inducibility of mouse cardiac antioxidants and phase 2 enzymes in vivo. Biochemical and Biophysical Research Communications, 317, 1080–1088.

    Article  PubMed  CAS  Google Scholar 

  13. Siegel, D., & Ross, D. (2000). Immunodetection of NAD(P)H:quinone oxidoreductase 1 (NQO1) in human tissues. Free Radical Biology and Medicine, 29, 246–253.

    Article  PubMed  CAS  Google Scholar 

  14. Griendling, K. K., & FitzGerald, G. A. (2003). Oxidative stress and cardiovascular injury: Part I: Basic mechanisms and in vivo monitoring of ROS. Circulation, 108, 1912–1916.

    Article  PubMed  Google Scholar 

  15. Griendling, K. K., & FitzGerald, G. A. (2003). Oxidative stress and cardiovascular injury: Part II: Animal and human studies. Circulation, 108, 2034–2040.

    Article  PubMed  Google Scholar 

  16. Asher, G., Lotem, J., Cohen, B., Sachs, L., & Shaul, Y. (2001). Regulation of p53 stability and p53-dependent apoptosis by NADH quinone oxidoreductase 1. Proceedings of the National Academy of Sciences of the United States of America, 98, 1188–1193.

    Article  PubMed  CAS  Google Scholar 

  17. Anwar, A., Dehn, D., Siegel, D., Kepa, J. K., Tang, L. J., Pietenpol, J. A., et al. (2003). Interaction of human NAD(P)H:quinone oxidoreductase 1 (NQO1) with the tumor suppressor protein p53 in cells and cell-free systems. Journal of Biological Chemistry, 278, 10368–10373.

    Article  PubMed  CAS  Google Scholar 

  18. Asher, G., Tsvetkov, P., Kahana, C., & Shaul, Y. (2005). A mechanism of ubiquitin-independent proteasomal degradation of the tumor suppressors p53 and p73. Genes and Development, 19, 316–321.

    Article  PubMed  CAS  Google Scholar 

  19. Garate, M., Wong, R. P., Campos, E. I., Wang, Y., & Li, G. (2008). NAD(P)H quinone oxidoreductase 1 inhibits the proteasomal degradation of the tumour suppressor p33(ING1b). EMBO Rep, 9, 576–581.

    Article  PubMed  CAS  Google Scholar 

  20. Alard, A., Fabre, B., Anesia, R., Marboeuf, C., Pierre, P., Susini, C., et al. (2010). NAD(P)H quinone-oxydoreductase 1 protects eukaryotic translation initiation factor 4GI from degradation by the proteasome. Molecular and Cellular Biology, 30, 1097–1105.

    Article  PubMed  Google Scholar 

  21. Nioi, P., & Hayes, J. D. (2004). Contribution of NAD(P)H:quinone oxidoreductase 1 to protection against carcinogenesis, and regulation of its gene by the Nrf2 basic-region leucine zipper and the arylhydrocarbon receptor basic helix-loop-helix transcription factors. Mutation Research, 555, 149–171.

    Article  PubMed  CAS  Google Scholar 

  22. Chen, X. L., Varner, S. E., Rao, A. S., Grey, J. Y., Thomas, S., Cook, C. K., et al. (2003). Laminar flow induction of antioxidant response element-mediated genes in endothelial cells. A novel anti-inflammatory mechanism. Journal of Biological Chemistry, 278, 703–711.

    Article  PubMed  CAS  Google Scholar 

  23. Lee, S. O., Chang, Y. C., Whang, K., Kim, C. H., & Lee, I. S. (2007). Role of NAD(P)H:quinone oxidoreductase 1 on tumor necrosis factor-alpha-induced migration of human vascular smooth muscle cells. Cardiovascular Research, 76, 331–339.

    Article  PubMed  CAS  Google Scholar 

  24. Kim, S. Y., Jeoung, N. H., Oh, C. J., Choi, Y. K., Lee, H. J., Kim, H. J., et al. (2009). Activation of NAD(P)H:quinone oxidoreductase 1 prevents arterial restenosis by suppressing vascular smooth muscle cell proliferation. Circulation Research, 104, 842–850.

    Article  PubMed  CAS  Google Scholar 

  25. Hur, K. Y., Kim, S. H., Choi, M. A., Williams, D. R., Lee, Y. H., Kang, S. W., et al. (2010). Protective effects of magnesium lithospermate B against diabetic atherosclerosis via Nrf2-ARE-NQO1 transcriptional pathway. Atherosclerosis, 211, 69–76.

    Article  PubMed  CAS  Google Scholar 

  26. Gaikwad, A., Long, D. J., 2nd, Stringer, J. L., & Jaiswal, A. K. (2001). In vivo role of NAD(P)H:quinone oxidoreductase 1 (NQO1) in the regulation of intracellular redox state and accumulation of abdominal adipose tissue. Journal of Biological Chemistry, 276, 22559–22564.

    Article  PubMed  CAS  Google Scholar 

  27. Hwang, J. H., Kim, D. W., Jo, E. J., Kim, Y. K., Jo, Y. S., Park, J. H., et al. (2009). Pharmacological stimulation of NADH oxidation ameliorates obesity and related phenotypes in mice. Diabetes, 58, 965–974.

    Article  PubMed  CAS  Google Scholar 

  28. Pink, J. J., Planchon, S. M., Tagliarino, C., Varnes, M. E., Siegel, D., & Boothman, D. A. (2000). NAD(P)H:Quinone oxidoreductase activity is the principal determinant of beta-lapachone cytotoxicity. Journal of Biological Chemistry, 275, 5416–5424.

    Article  PubMed  CAS  Google Scholar 

  29. Bey, E. A., Bentle, M. S., Reinicke, K. E., Dong, Y., Yang, C. R., Girard, L., et al. (2007). An NQO1- and PARP-1-mediated cell death pathway induced in non-small-cell lung cancer cells by beta-lapachone. Proceedings of the National Academy of Sciences of the United States of America, 104, 11832–11837.

    Article  PubMed  CAS  Google Scholar 

  30. Kelsey, K. T., Ross, D., Traver, R. D., Christiani, D. C., Zuo, Z. F., Spitz, M. R., et al. (1997). Ethnic variation in the prevalence of a common NAD(P)H quinone oxidoreductase polymorphism and its implications for anti-cancer chemotherapy. British Journal of Cancer, 76, 852–854.

    Article  PubMed  CAS  Google Scholar 

  31. Gaedigk, A., Tyndale, R. F., Jurima-Romet, M., Sellers, E. M., Grant, D. M., & Leeder, J. S. (1998). NAD(P)H:quinone oxidoreductase: polymorphisms and allele frequencies in Caucasian, Chinese and Canadian Native Indian and Inuit populations. Pharmacogenetics, 8, 305–313.

    Article  PubMed  CAS  Google Scholar 

  32. Traver, R. D., Siegel, D., Beall, H. D., Phillips, R. M., Gibson, N. W., Franklin, W. A., et al. (1997). Characterization of a polymorphism in NAD(P)H:quinone oxidoreductase (DT-diaphorase). British Journal of Cancer, 75, 69–75.

    Article  PubMed  CAS  Google Scholar 

  33. Han, S. J., Kang, E. S., Kim, H. J., Kim, S. H., Chun, S. W., Ahn, C. W., et al. (2009). The C609T variant of NQO1 is associated with carotid artery plaques in patients with type 2 diabetes. Molecular Genetics and Metabolism, 97, 85–90.

    Article  PubMed  CAS  Google Scholar 

  34. Isbir, C. S., Ergen, A., Tekeli, A., Zeybek, U., Gormus, U., & Arsan, S. (2008). The effect of NQO1 polymorphism on the inflammatory response in cardiopulmonary bypass. Cell Biochemistry and Function, 26, 534–538.

    Article  PubMed  CAS  Google Scholar 

  35. Martin, N. J., Collier, A. C., Bowen, L. D., Pritsos, K. L., Goodrich, G. G., Arger, K., et al. (2009). Polymorphisms in the NQO1, GSTT and GSTM genes are associated with coronary heart disease and biomarkers of oxidative stress. Mutation Research, 674, 93–100.

    PubMed  CAS  Google Scholar 

  36. Shyu, H. Y., Fong, C. S., Fu, Y. P., Shieh, J. C., Yin, J. H., Chang, C. Y., et al. (2010). Genotype polymorphisms of GGCX, NQO1, and VKORC1 genes associated with risk susceptibility in patients with large-artery atherosclerotic stroke. Clinical Chemistry of Acta, 411, 840–845.

    Article  CAS  Google Scholar 

  37. Palming, J., Sjoholm, K., Jernas, M., Lystig, T. C., Gummesson, A., Romeo, S., et al. (2007). The expression of NAD(P)H:quinone oxidoreductase 1 is high in human adipose tissue, reduced by weight loss, and correlates with adiposity, insulin sensitivity, and markers of liver dysfunction. Journal of Clinical Endocrinology and Metabolism, 92, 2346–2352.

    Article  PubMed  CAS  Google Scholar 

  38. Wang, G., Zhang, L., & Li, Q. (2006). Genetic polymorphisms of GSTT1, GSTM1, and NQO1 genes and diabetes mellitus risk in Chinese population. Biochemical and Biophysical Research Communications, 341, 310–313.

    Article  PubMed  CAS  Google Scholar 

  39. Kristiansen, O. P., Larsen, Z. M., Johannesen, J., Nerup, J., Mandrup-Poulsen, T., & Pociot, F. (1999). No linkage of P187S polymorphism in NAD(P)H: quinone oxidoreductase (NQO1/DIA4) and type 1 diabetes in the Danish population. DIEGG and DSGD. Danish IDDM epidemiology and genetics group and the Danish study group of diabetes in childhood. Human Mutation, 14, 67–70.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported in part by NIH grants DK81905 (HZ) and HL93557 (YL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, H., Li, Y. NAD(P)H:Quinone Oxidoreductase 1 and its Potential Protective Role in Cardiovascular Diseases and Related Conditions. Cardiovasc Toxicol 12, 39–45 (2012). https://doi.org/10.1007/s12012-011-9136-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-011-9136-9

Keywords

Navigation