Skip to main content
Log in

Effect of Sex and Dietary Organic Zinc on Growth Performance, Carcass Traits, Tissue Mineral Content, and Blood Parameters of Broiler Chickens

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Zinc (Zn) is an essential mineral for animal development and function. A study was carried out to evaluate the effect of sex and dietary organic zinc (OZ) on growth performance, carcass traits, tissue mineral content, and blood parameters of broiler chickens. A total of 240 1-day-old male and 240 female broiler chicks (Cobb × Cobb) were assigned to two dietary levels of OZ (2 × 2 factorial) with six replicates per treatment (20 birds/replicate pen). The OZ supplementation levels were 0 and 25 ppm. Results showed that OZ supplementation did not affect the growth performance of male and female broilers, but the males showed significantly better (P < 0.05) growth performance than females did. Similarly, OZ supplementation did not affect the thickness of both the back and thigh skin of male and female broilers; however, males had thicker skin than females. Dietary OZ supplementation did not affect collagen contents in the skin and meat samples. Male broilers had higher skin collagen contents than females, but no sex difference was found in meat collagen contents. OZ supplementation did not affect the shear force values of skin and meat samples. Male broilers had higher shear force values of back skin than females, but not in the meat samples. Dietary OZ supplementation increased (P < 0.05) the thigh meat Zn content in both sexes. The plasma Ca content was significantly (P < 0.05) increased by dietary OZ supplementation; however, other blood parameters were not affected by dietary OZ supplementation. Males had higher plasma glucose and cholesterol content than females. It is concluded that dietary OZ supplementation at the level of 25 ppm does not affect the growth performance and skin quality of broiler chickens but increases the Zn content in thigh meat and Ca content in plasma of broiler chickens. Male broilers had better growth performance and skin quality than females.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vallee BL, Falchuk KH (1993) The biochemical basis of Zn physiology. Physiol Rev 73:79–118

    Article  PubMed  CAS  Google Scholar 

  2. Gaither LA, Eide DJ (2001) Eukaryotic Zn transporters and their regulation. Biometals 14:251–270

    Article  PubMed  CAS  Google Scholar 

  3. Salim HM, Jo C, Lee BD (2008) Zinc in broiler feeding and nutrition. Avian Bio Res 1:5–18

    Article  Google Scholar 

  4. Pimentel JL, Cook ME, Greger JL (1991) Immune response of chicks fed various levels of zinc. Poult Sci 70:947–954

    Article  PubMed  CAS  Google Scholar 

  5. Weismann K (1978) What is the use of zinc for wound healing? Int J Dermatol 17:568

    Article  PubMed  CAS  Google Scholar 

  6. Bao YM, Choct M, Iji PA, Bruerton K (2010) Trace mineral interactions in broiler chicken diets. Br Poult Sci 51:109–117

    Article  PubMed  CAS  Google Scholar 

  7. Dewar WA, Downie JN (1984) The zinc requirements of broiler chicks and turkey poults fed on purified diets. Br J Nutr 51:467–477

    Article  PubMed  CAS  Google Scholar 

  8. Young RJ, Edwards HM Jr, Gillis MB (1958) Studies on zinc in poultry nutrition: zinc requirement and deficiency symptoms of chicks. Poult Sci 37:1101–1107

    Article  Google Scholar 

  9. Scott ML, Nesheim MC, Yang RJ (1982) Essential inorganic elements. In: Scott ML (ed) Nutrition of the chicken. Humphrey, Geneva, pp 277–382

    Google Scholar 

  10. Salim HM, Lee HR, Jo C, Lee SK, Lee BD (2011) Supplementation of graded levels of organic Zn to the diets of female broilers: effect on performance and carcass quality. Br Poult Sci 52:606–612

    Article  PubMed  CAS  Google Scholar 

  11. Salim HM, Lee HR, Jo C, Lee SK, Lee BD (2010) Effect of sources and levels of Zn on the tissue mineral concentration and carcass quality of broilers. Avian Bio Res 3:23–29

    Article  Google Scholar 

  12. Bao YM, Choct M, Iji PA, Bruerton K (2007) Effect of organically complexed copper, iron, manganese, and zinc on broiler performance, mineral excretion, and accumulation in tissues. J Appl Poult Res 16:448–455

    CAS  Google Scholar 

  13. Burrell AL, Dozier WA, Davis AJ, Compton MM, Freeman ME, Vendrell PF, Ward TL (2004) Responses of broilers to dietary zinc concentrations and sources in relation to environmental implications. Br Poult Sci 45:255–263

    Article  PubMed  CAS  Google Scholar 

  14. Ashmead HD (1993) Comparative intestinal absorption and subsequent metabolism of metal amino acid chelates and inorganic metal salts. In: Ashmead HD (ed) The roles of amino acid chelates in animal nutrition. Noyes, Park Ridge, pp 32–57

    Google Scholar 

  15. Vieira SL (2008) Chelated minerals for poultry. Rev Bras Cienc Avic, vol 10(2) Campinas Apr/Jun 2008

  16. Ao T, Pierce JI, Power R, Dawson KA, Pescator AJ, Cantor AH, Ford MJ (2006) Evaluation of Bioplex Zn as organic Zn source for chicks. Int J Poult Sci 5:808–811

    Article  Google Scholar 

  17. Pimentel JL, Cook ME, Greger JL (1991) Research note: bioavailability of zinc–methionine for chicks. Poult Sci 70:1637–1639

    Article  Google Scholar 

  18. Seiji A, Baker HD (1993) Nutritional evaluation of copper–lysine and Zn–lysine complexes for chicks. Poult Sci 72:165–171

    Article  Google Scholar 

  19. Hill DA, Peo ER Jr, Lewis AJ, Crenshaw JD (1986) Zinc amino-acid complexes for swine. J Anim Sci 63:121–130

    PubMed  CAS  Google Scholar 

  20. Wedekind KJ, Hortin AE, Baker DH (1992) Methodology for assessing Zn bioavailability: efficacy estimates for Zn methionine, Zn sulfate, and Zn oxide. J Anim Sci 70:178–187

    PubMed  CAS  Google Scholar 

  21. Leeson S (2003) A new look at trace mineral nutrition of poultry: can we reduce the environmental burden of poultry manure? Lyons TP and Jacques KA (eds) Nutritional biotechnology in the feed and food industries. Proc Alltech’s 19th Ann Symp, Nottingham University Press, pp 125–129

  22. Peric L, Nollet L, Miloševic N, Žikic D (2006) Effect of Bioplex and Sel-Plex substituting inorganic trace mineral sources on performance of broilers. Arch Geflügelk 71:122–129

    Google Scholar 

  23. Nollet L, Van der Klis JD, Lensing M, Spring P (2007) The effect of replacing inorganic with organic trace minerals in broiler diets on productive performance and mineral excretion. J Appl Poult Res 16:592–597

    Article  CAS  Google Scholar 

  24. Nollet L, Huyghebaert G, Spring P (2008) Effect of different levels of dietary organic (Bioplex) trace minerals on live performance of broiler chickens by growth phases. J Appl Poult Res 17:109–115

    Article  CAS  Google Scholar 

  25. Ao T, Pierce JL, Pescatore AJ, Cantor AH, Dawson KA, Ford MJ, Paul M (2011) Effects of feeding different concentration and forms of zinc on the performance and tissue mineral status of broiler chicks. Br Poult Sci 52:466–471

    Article  PubMed  CAS  Google Scholar 

  26. Bonimi A, Quarantelli A, Superchi P, Sabbioni A, Lucchelli L (1983) Chelated trace element complexes in the feeding of broiler chicken. Annali-della-Facolta-di-Medicina-Veterinaria-di-Parma 3:103–118

    Google Scholar 

  27. Bilgili SF, Hess JB (1995) Placement density influences broiler carcass grade and meat yields. J Appl Poult Res 4:384–389

    Google Scholar 

  28. Christensen KD, Zimmermann NG, Wyatt CL, Goodman TN (1994) Dietary and environmental factors affecting skin strength in broiler chickens. Poult Sci 73:224–235

    Article  PubMed  CAS  Google Scholar 

  29. Edwards HM, Denman F, Abou-Ashour A, Nugara D (1973) Carcass composition studies. 1. Influence of age, sex, and type of dietary fat supplementation on total carcass and fatty acid composition. Poult Sci 52:934–943

    Article  CAS  Google Scholar 

  30. Pinion JL, Bilgili SF, Hess JB (1995) The effects of halofuginone and salinomycin, alone and in combination on live performance and skin characteristics of female broilers: influence of a high-proline diet supplemented with ascorbic acid and Zn. Poult Sci 74:383–390

    Article  PubMed  CAS  Google Scholar 

  31. Hess JB, Bilgili SF, Parson AM, Downs KM (2001) Influence of complexed zinc products on live performance and carcass grade of broilers. J Appl Anim Res 19:49–60

    Article  CAS  Google Scholar 

  32. National Research Council (1994) Nutrient requirements of poultry, 9 revth edn. National Academy, Washington

    Google Scholar 

  33. AOAC International (2000) Official methods of analysis of AOAC International, 17th edn. AOAC International, Gaithersburg

    Google Scholar 

  34. Ignat’eva NY, Danilov NA, Averkiev SV, Obrezkova MV, Lunin VV, Sobol EN (2007) Determination of hydroxyproline in tissues and the evaluation of the collagen content of the tissues. J Anal Chem 62:51–57

    Article  Google Scholar 

  35. Cross HR, Carpenter JL, Smith GC (1973) Effect of intramuscular collagen and elastin on bovine meat tenderness. J Food Sci 38:998–1003

    Article  Google Scholar 

  36. Gwartney BL, Jones SJ, Calkins CR (1992) Response time of broiler chickens to cimaterol: meat tenderness, meat composition fiber size, and carcass characteristics. J Anim Sci 70:2144–2150

    PubMed  CAS  Google Scholar 

  37. SAS Institute (2003) SAS user’s guide: statistics. Version 9.1. SAS Institute, Cary

    Google Scholar 

  38. Berger LL (2006) Trace minerals. In: Cunha TJ (ed) Salt and trace minerals for livestock, poultry and other animals. Salt Institute, Alexandria

    Google Scholar 

  39. Rossi P, Rutz F, Anciuti MA, Rech JL, Zauk NHF (2007) Influence of graded levels of organic Zn on growth performance and carcass traits of broilers. J Appl Poult Res 16:219–225

    CAS  Google Scholar 

  40. Mehring AL, Brumbaugh JH, Titus HW (1956) A comparison of the growth of chicks fed diets containing different quantities of zinc. Poult Sci 35:956–958

    Article  CAS  Google Scholar 

  41. Zhao J, Shirley RB, Vazquez-Anon M, Dibner JJ, Richards JD, Fisher P, Hampton T, Christensen KD, Allard JP, Giesen AF (2010) Effects of chelated trace minerals on growth performance, breast meat yield, and footpad health in commercial meat broilers. J Appl Poult Res 19:365–372

    Article  CAS  Google Scholar 

  42. López KP, Schilling MW, Corzo A (2011) Broiler genetic strain and sex effects on meat characteristics. Poult Sci 90:1105–1111

    Article  PubMed  Google Scholar 

  43. Lowe PC, Merkley JW (1986) Association of genotypes for rate of feathering in broilers with production and carcass composition traits. Effect of genotypes, sex and diet on growth and feed conversion. Poultry Sci 65:1853–1858

    Article  Google Scholar 

  44. Leeson S, Summers JD (2005) Commercial poultry nutrition. University Books, Guelph

    Google Scholar 

  45. McGrath JA, Eady RA, Pope FM (2004) Textbook of dermatology, 7th edn. Blackwell, Oxford

    Google Scholar 

  46. Jonhson RW, Escobar J, Webel DM (2001) Nutrition and immunology of swine. In: Lewis AJ, Southern LL (eds) Swine nutrition. CRC, Boca Raton, pp 545–562

    Google Scholar 

  47. Crosley RL, Cascy NH, Smith GA, Roosendaal R (1992) Influence of phased inclusion of halofuginone on broiler skin tensile strength and growth performance. J S Afric Vet Asso 63:11–15

    CAS  Google Scholar 

  48. Ramshaw JAM, Rigby BJ, Mitchell TW, Nieass A (1986) Changes in the physical and chemical properties of skin collagen from broiler chickens exhibiting the oily bird syndrome. Poult Sci 65:43–50

    Article  PubMed  CAS  Google Scholar 

  49. Miller ER, Stowe HD, Ku PK, Hill GM (1979) In: “Copper and zinc in animal nutrition”. Literature Review Committee, National Feed Ingredients Association, West Des Moines

  50. Smith TWJR, Couch JR, Garrett RL, Creger CR (1977) The effect of sex, dietary energy, meat protein, ascorbic acid and iron on broiler skin collagen. Poult Sci 56:1216–1220

    Article  PubMed  CAS  Google Scholar 

  51. Granot I, Pines M, Plavnik I, Wax E, Hurwits S, Bartov I (1991) Skin tearing in broiler in relation to skin collagen: effects of sex, strain and diet. Poult Sci 70:1928–1935

    Article  PubMed  CAS  Google Scholar 

  52. Salim HM, Lee HR, Jo C, Lee SK, Lee BD (2011) Effect of dietary zinc proteinate supplementation on growth performance, and skin and meat quality of male and female broiler chicks. Br Poult Sci (Accepted July 20, 2011).

  53. Cahaner A, Gutman M, Pines M (1993) Genetic and phenotypic association between skin tearing and skin collagen, protein, and fat in broilers. Poult Sci 72:1832–1840

    Article  Google Scholar 

  54. Kafri I, Cherry JA, Jones DE, Siegel PB (1985) Breaking strength and composition of the skin of broiler chicks: response to dietary calorie–protein ratios. Poult Sci 64:2143–2149

    Article  PubMed  CAS  Google Scholar 

  55. Weinberg ZG, Angel S, Navrot C (1986) The effects of sex, age, and feed on tensile strength of broiler skin. Poult Sci 65:903–906

    Article  Google Scholar 

  56. Bilgili SF, Eckman MK, Bushong RD (1993) Broiler skin strength: influence of age, sex, and feathering rate. J Appl Poult Res 2:135–141

    Google Scholar 

  57. Kafri I, Zelenka DJ, Cherry JA, Siegel PB (1984) Skin breaking strength in chickens: compositions among genetic combinations. Poultry Sci 63:1279–1280

    Article  CAS  Google Scholar 

  58. Angel S, Weinberg ZG, Polisluk O, Heit M, Plavnik I, Bartov I (1985) A connection between a dietary coccidiostat and skin tears of female broiler chickens. Poult Sci 64:294–296

    Article  Google Scholar 

  59. Subar AM, Krebs-Smith SM, Cook A, Kahle LL (1998) Dietary sources of nutrients among U.S. adults, 1989 to 1991. J Am Diet Assoc 98:537–547

    Article  PubMed  CAS  Google Scholar 

  60. Hortin AE, Oduho G, Han Y, Bechtel PJ, Baker DH (1993) Bioavailability of zinc in ground beef. J Anim Sci 71:119–123

    PubMed  CAS  Google Scholar 

  61. Mohanna C, Nys Y (1998) Influence of age, sex and cross on body concentrations of trace elements (zinc, iron, copper and manganese) in chickens. Br Poult Sci 39:536–543

    Article  PubMed  CAS  Google Scholar 

  62. Scherz H, Senser F (2000) Souci Fachmann and Kraut food composition and nutrition tables, 6 revth edn. CRC, Stuttgart

    Google Scholar 

  63. Pennington JA, Schoen TSA, Salmon GD, Young B, Johnson RD, Marts RW (1995) Composition of core foods of the U.S. food supply 1982–1991. J Food Compos Anal 8:129–169

    Article  CAS  Google Scholar 

  64. McCormick CC, Cunningham DL (1987) Performance and physiological profiles of high dietary zinc and fasting as methods of inducing a forced rest: a direct comparison. Poult Sci 66:1007–1013

    Article  PubMed  CAS  Google Scholar 

  65. Williams SN, Miles RD, Ouart MD, Campbell DR (1989) Short-term high level zinc feeding and tissue zinc concentration in mature laying hens. Poult Sci 68:539–545

    Article  PubMed  CAS  Google Scholar 

  66. Emmert JL, Baker DH (1995) Zn stores in chickens delays the onset of Zn deficiency symptoms. Poult Sci 74:101–1021

    Article  Google Scholar 

  67. Sandoval M, Henry PR, Luo XG, Littell RC, Miles RD, Ammerman CB (1998) Performance and tissue Zn and metallothionine accumulation in chicks fed a high dietary level of Zn. Poult Sci 77:1354–1363

    PubMed  CAS  Google Scholar 

  68. Mohanna C, Nys Y (1999) Effect of dietary Zn content and sources on the growth, body Zn deposition and retention, Zn excretion and immune response in chickens. Br Poult Sci 40:108–114

    Article  PubMed  CAS  Google Scholar 

  69. Health Line (2011) Zinc in diet health. Web’s based health sites, http://www.healthline.com/adamcontent/zinc-in-diet. Accessed 8 August 2011

  70. Leonhardt M, Wenk C (1997) Variability of selected vitamins and trace elements of different meat cuts. J Food Com Anal 10:218–224

    Article  CAS  Google Scholar 

  71. Mavromichalis I, Emmert JL, Aoyagi S, Baker DH (2000) Chemical composition of whole body, tissues, and organs of young chickens (Gallus domesticus). J Food Com Anal 13:799–807

    Article  CAS  Google Scholar 

  72. Donmez N, Donmez HH, Keskin E, Celik I (1987) Effects of zinc supplementation to ration on some hematological parameters in broiler chicks. Biol Trace Elem Res 87:125–131

    Article  Google Scholar 

  73. Feng J, Ma WQ, Niu HH, Wu XM, Wang Y, Feng J (2010) Effects of zinc glycine chelate on growth, hematological, and immunological characteristics in broilers. Biol Trace Elem Res 133:203–211

    Article  PubMed  CAS  Google Scholar 

  74. Ahmed A, Anjum FM, Ur Rehman S, Randhawa MA, Farooq U (2008) Bioavailability of calcium, iron and zinc fortified whole wheat flour chapatti. P Foods H Nutr 63:7–13

    Article  CAS  Google Scholar 

  75. Ashmead HD (1992) The roles of amino acid chelates in animal nutrition. Noyes, Westwood

    Google Scholar 

  76. Moreng RE, Balnave D, Zhang D (1992) Dietary zinc methionine effect on eggshell quality of hens drinking saline water. Poult Sci 71:1163–1167

    Article  PubMed  CAS  Google Scholar 

  77. Kucuk O, Kahraman A, Kurt I, Yildiz N, Onmaz AC (2008) A combination of zinc and pyridoxine supplementation to the diet of laying hens improves performance and egg quality. Biol Trace Elem Res 126:165–175

    Article  PubMed  CAS  Google Scholar 

  78. Lu J, Combs GF Jr (1988) Effect of excess dietary zinc on pancreatic exocrine function in the chick. J Nutr 118:681–689

    PubMed  CAS  Google Scholar 

  79. Clausen JO, Johnsen KB, Ibsen H, Bergman RN, Hougaard P, Winther K, Pedersen O (1996) Insulin sensitivity index, acute insulin response, and glucose effectiveness in a population-based sample of 380 young healthy Caucasians: analysis of the impact of gender, body fat, physical fitness, and life-style factors. J Clin Invest 98:1195–1209

    Article  PubMed  CAS  Google Scholar 

  80. Scholtz N, Halle I, Flachowsky G, Sauerwein H (2009) Serum chemistry reference values in adult Japanese quail (Coturnix coturnix japonica) including sex-related differences. Poult Sci 88:1186–1190

    Article  PubMed  CAS  Google Scholar 

  81. Rodriguez P, Tortosa FS, Millian J, Gortazar C (2004) Plasma chemistry reference values from captive red-legged partridges (Alectoris rufa). Br Poult Sci 45:565–567

    Article  PubMed  CAS  Google Scholar 

  82. Rodriguez P, Tortosa FS, Gortazar C (2006) Daily variations of blood biochemical parameters in the red-legged partridges (Alectoris rufa). Europ J Wild Res 52:277–281

    Article  Google Scholar 

  83. Ferrer M, Amat JA, Vinuela J (1994) Daily variations of blood chemistry values in the chinstrap penguin (Pygoscelis antartica) during the Antarctic summer. Comp Biochem Physiol 107A:81–84

    Article  CAS  Google Scholar 

  84. Perez-Rodriguez L, Mougeot F, Alonso-Alvarez C, Blas J, Vinuela J, Bortolotti GR (2008) Cell-mediated immune activation rapidly decreases plasma carotenoids but does not affect oxidative stress in red-legged partridges (Alectoris rufa). J Exp Biol 211:2155–2161

    Article  PubMed  CAS  Google Scholar 

  85. Ross JG, Christie G, Halliday WG, Jones RM (1978) Haematological and blood chemistry “comparison values” for clinical pathology in poultry. Vet Rec 14(102):29–31

    Article  Google Scholar 

Download references

Acknowledgment

The authors thank Dr. S. W. Cho, Department of Pathology, College of Veterinary Medicine, Chungnam National University, for his assistance in sample collection, skin tissue preparation, and measurement of skin layer thickness.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bong Duk Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salim, H.M., Lee, H.R., Jo, C. et al. Effect of Sex and Dietary Organic Zinc on Growth Performance, Carcass Traits, Tissue Mineral Content, and Blood Parameters of Broiler Chickens. Biol Trace Elem Res 147, 120–129 (2012). https://doi.org/10.1007/s12011-011-9282-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-011-9282-8

Keywords

Navigation