Skip to main content

Advertisement

Log in

Biosorption of Heavy Metal Ions (Cu2+, Mn2+, Zn2+, and Fe3+) from Aqueous Solutions Using Activated Sludge: Comparison of Aerobic Activated Sludge with Anaerobic Activated Sludge

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The potential of using two different kinds of air drying of activated sludge (aerobic activated sludge and anaerobic activated sludge) for the removal of Cu2+, Mn2+, Zn2+, and Fe3+ from aqueous solutions was assessed. Results indicated that the maximum biosorption occurred at pH = 5.0 for Cu2+, Zn2+, and Mn2+ and pH = 3.0 for Fe3+. The kinetic parameters of biosorption data were found to be best fitted to the second-order equation. Also, it was found that the best dosage for biosorption was 0.2 g for both aerobic activated sludge and anaerobic activated sludge. The experimental results were fitted well to the Langmuir, Freundlich, and Dubinin–Radushkevich (D-R) isotherms. The maximum biosorption capacities of Cu2+, Mn2+, Zn2+, and Fe3+ for aerobic activated sludge were 65.789, 44.843, 64.935, and 75.756 mg/g, respectively, while they were 59.880, 49.020, 62.500, and 69.444 mg/g for anaerobic activated sludge, respectively. The mean free energy values evaluated from the D-R model indicated that the biosorptions of studied heavy metal ions onto activated sludge were taken place by chemical interaction. The results of this study provided valuable information on the biosorption of heavy metals by activated sludge that may contribute in wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kobya, M., Demirbas, E., Senturk, E., & Ince, M. (2005). Adsorption of heavy metal ions from aqueous solution by activated carbon prepared from apricot stone. Bioresource Technology, 96, 1518–1521.

    Article  CAS  Google Scholar 

  2. Qin, F., & Wen, B. (2007). Single-and multi-component adsorption of Pb, Cu and Cd on peat. Bulletin of Environmental Contamination and Toxicology, 78, 265–269.

    Article  Google Scholar 

  3. Hannachi, Y., Shapovalov, N. A., & Hannachi, A. (2009). Adsorption of nickel from aqueous solution by the use of low-cost adsorbents. Desalination and Water Treatment, 12, 276–283.

    Article  CAS  Google Scholar 

  4. Luo, S. L., Yuan, L., & Chai, L. Y. (2006). Biosorption behaviors of Cu2+, Zn2+, Cd2+ and mixture by waste activated sludge. Transactions of Nonferrous Metals Society of China, 16, 1431–1435.

    Article  CAS  Google Scholar 

  5. Iddou, A., & Ouali, M. S. (2008). Waste-activated sludge (WAS) as Cr(III) sorbent biosolid from wastewater effluent. Colloids and Surfaces B: Biointerfaces, 66, 240–245.

    Article  CAS  Google Scholar 

  6. Zhang, H. F., Sun, B. S., Zhao, X. H., & Sun, J. M. (2009). Membrane fouling caused by soluble microbial products in an activated sludge system under starvation. Desalination and Water Treatment, 1, 180–185.

    Article  CAS  Google Scholar 

  7. Geng, Z. H., Hall, E. R., & Bérubé, P. R. (2009). Roles of various mixed liquor constituents in membrane filtration of activated sludge. Desalination and Water Treatment, 1, 139–149.

    Article  CAS  Google Scholar 

  8. Kawasaki, K., Tanimoto, H., Nagasaki, R., & Matsuda, A. (2010). The filtration characteristics of hollow fiber microfiltration—effect of various kinds of solids in the excess activated sludge. Desalination and Water Treatment, 17, 155–159.

    Article  CAS  Google Scholar 

  9. Maheswari, S., & Murugesan, A. G. (2009). Biosorption of arsenic(III) ion from aqueous solution using Aspergillus fumigatus isolated from arsenic contaminated site. Desalination and Water Treatment, 11, 294–301.

    Article  CAS  Google Scholar 

  10. Govender, S., Przybylowicz, W., & Swart, P. (2009). Removal of heavy metals from solution using biocompatible polymers. Desalination and Water Treatment, 9, 272–278.

    Article  CAS  Google Scholar 

  11. Okoronkwo, A. E., Aiyesanmi, A. F., & Olasehinde, E. F. (2009). Biosorption of nickel from aqueous solution by Tithonia diversifolia. Desalination and Water Treatment, 12, 352–359.

    Article  CAS  Google Scholar 

  12. Cheriti, A., Talhi, M. F., Belboukhari, N., Taleb, S., & Roussel, C. (2009). Removal of copper from aqueous solution by Retama raetam Forssk. growing in Algerian Sahara. Desalination and Water Treatment, 10, 317–320.

    Article  CAS  Google Scholar 

  13. Oh, S. E., Hassan, J. H., & Joo, J. H. (2009). Biosorption of heavy metals by lyophilized cells of Pseudomonas stutzeri. World Journal of Microbiology and Biotechnology, 25, 1771–1778.

    Article  CAS  Google Scholar 

  14. Gabr, R. M., Hassan, S. H. A., & Shoreit, A. A. M. (2008). Biosorption of lead and nickel by living and non-living cells of Pseudomonas aeruginosa ASU 6a. International Biodeterioration and Biodegradation, 62, 195–203.

    Article  CAS  Google Scholar 

  15. Kadukova, J., & Vircikova, E. (2005). Comparison of differences between copper bioaccumulation and biosorption. Environmental International, 31, 227–232.

    Article  CAS  Google Scholar 

  16. Nomanbhay, S. N., & Palanisamy, K. (2004). Removal of heavy metal from industrial wastewater using chitosan coated oil palm shell charcoal. Electronic Journal of Biotechnology, 8, 1635–1642.

    Google Scholar 

  17. Apiratikul, R., Marhaba, T. F., Wattanachira, S., & Pavasant, P. (2004). Biosorption of binary mixtures of heavy metals by green macro alga, Caulerpa lentillifera. Songklanakarin Journal of Science and Technology, 26, 99–207.

    Google Scholar 

  18. Liu, H., Chai, L. Y., & Min, X. B. (2004). Study and development of activated-sludge treatment of heavy metal-containing wastewater. Industrial Water and Wastewater, 35, 9–11.

    CAS  Google Scholar 

  19. Zhang, J. W. (2004). Approach on the disposal of heavy metal industrial wastewater by microoraganism. Inner Mongolia, Environmental Protection, 16, 46–47.

    Google Scholar 

  20. Huang, S. H. (1992). The role of bacteria immobilized metal mechanism. The Journal of Microbiology, 19, 171–173.

    CAS  Google Scholar 

  21. Baral, S. S., Das, S. N., Chaudhury, G. R., Swamy, Y. V., & Rath, P. (2008). Adsorption of Cr(VI) using thermally activated weed Salvinia cucullata. Chemical Engineering Journal, 139, 245–255.

    Article  CAS  Google Scholar 

  22. Karthikeyen, T., Rajgopal, S., & Miranda, L. R. (2005). Cr(VI) adsorption from aqueous solution by Hevea brasilinesis saw dust activated carbon. Journal of Hazardous Materials, 124, 192–199.

    Article  Google Scholar 

  23. Zhou, L. M., Wang, Y. P., Liu, Z. R., & Huang, Q. W. (2009). Characteristics of equilibrium, kinetics studies for adsorption of Hg(II), Cu(II), and Ni(II) ions by thiourea-modified magnetic chitosan microspheres. Journal of Hazardous Materials, 161, 995–1002.

    Article  CAS  Google Scholar 

  24. Monier, M., Ayad, D. M., Wei, Y., & Sarhan. (2010). Adsorption of Cu(II), Co(II), and Ni(II) ions by modified magnetic chitosan chelating resin. Journal of Hazardous Materials, 177, 962–970.

    Article  CAS  Google Scholar 

  25. Al-Qodah, Z. (2006). Biosorption of heavy metal ions from aqueous solutions by activated sludge. Desalination, 196, 164–176.

    Article  CAS  Google Scholar 

  26. Namasivayam, C., & Yamuna, R. T. (1995). Adsorption of Cr(VI) by a low cost adsorbent: biogas residual slurry. Chemosphere, 30, 561–578.

    Article  CAS  Google Scholar 

  27. Wang, X. J., Xia, S. Q., Chen, L., Zhao, J. F., Chovelon, J. M., & Nicole, J. R. (2006). Biosorption of cadmium(II) and lead(II) ions from aqueous solutions onto dried activated sludge. Journal of Environmental Sciences, 18, 840–844.

    Article  CAS  Google Scholar 

  28. Gulnaz, O., Saygideger, S., & Kusvuran, E. (2005). Study of Cu(II) biosorption by dried activated sludge: effect of physico-chemical environment and kinetics study. Journal of Hazardous Materials, 120, 193–200.

    Article  CAS  Google Scholar 

  29. Wang, X. J., Chen, L., Xia, S. Q., Zhao, J. F., Chovelon, J. M., & Nicole, J. R. (2006). Biosorption of Cu(II) and Pb(II) from aqueous solutions by dried activated sludge. Minerals Engineering, 19, 968–971.

    Article  CAS  Google Scholar 

  30. Qodah, Z. A. (2006). Biosorption of heavy metal ions from aqueous solutions by activated sludge. Desalination, 196, 164–176.

    Article  Google Scholar 

  31. Vasudevan, P., Padmavathy, V., & Dhingra, S. C. (2002). Biosorption of monovalent and divalentions on Bakers yeast. Bioresource Technology, 82, 285–289.

    Article  CAS  Google Scholar 

  32. Boota, R., Bhatti, H. N., & Hanif, M. A. (2009). Removal of Cu(II) and Zn(II) using lignocellulosic fiber derived from Citrus reticulata (Kinnow) waste biomass. Separation Science and Technology, 44, 4000–4022.

    Article  CAS  Google Scholar 

  33. Hammaini, A., González, F., Ballester, A., Blazquez, M. L. A., & Munoz, J. A. (2007). Biosorption of heavy metals by activated sludge and their desorption characteristics. Journal of Environmental Management, 84, 419–426.

    Article  CAS  Google Scholar 

  34. Otero, M., Rozada, F., Morán, A., Calvo, L. F., & García, A. L. (2009). Removal of heavy metals from aqueous solution by sewage sludge based sorbents: competitive effects. Desalination, 239, 46–57.

    Article  CAS  Google Scholar 

  35. Akçay, G., Kılınç, E., & Akçay, M. (2009). The equilibrium, kinetics studies of flurbiprofen adsorption onto tetrabutylammonium montmorillonite (TBAM). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 335, 189–193.

    Article  Google Scholar 

  36. Sari, A., Mendil, D., Tuzen, D., & Soylak, M. (2008). Biosorption of Cd(II) and Cr(III) from aqueous solution by moss (Hylocomium splendens) biomass: equilibrium, kinetic and thermodynamic studies. Chemical Engineering Journal, 144, 1–9.

    Article  CAS  Google Scholar 

  37. Dubinin, M. M., Zaverina, E. D., & Radushkevich, L. V. (1947). Sorption and structure of active carbons. I. Adsorption of organic vapors. Zhurnal Fizicheskoi Khimii, 21, 1351–1362.

    CAS  Google Scholar 

  38. Kocaoba, S. (2007). Comparison of Amberlite IR 120 and dolomite’s performances for removal of heavy metals. Journal of Hazardous Materials, 147, 488–496.

    Article  CAS  Google Scholar 

  39. Freundlich, H. M. F. (1906). Über die adsorption in lösungen. Zeitschrift für Physikalische Chemie, 5, 385–470.

    Google Scholar 

  40. Hawari, A., Rawajfih, Z., & Nsour, N. (2009). Equilibrium and thermodynamic analysis of zinc ions adsorption by olive oil mill solid residues. Journal of Hazardous Materials, 168, 1284–1289.

    Article  CAS  Google Scholar 

  41. Namasivayam, C., & Sureshkumar, M. V. (2008). Removal of chromium(VI) from water and wastewater using surfactant modified coconut coir pith as a biosorbent. Bioresource Technology, 99, 2218–2225.

    Article  CAS  Google Scholar 

  42. Hawari, A. H., & Mulligan, C. N. (2006). Biosorption of lead(II), cadmium(II), copper(II) and nickel(II) by anaerobic granular biomass. Bioresource Technology, 97, 692–700.

    Article  CAS  Google Scholar 

  43. Kaçar, Y., Arpa, Ç., Tan, S., Denizli, A., Genç, Ö., & Arıca, M. Y. (2002). Biosorption of Hg(II) and Cd(II) from aqueous solutions: comparison of biosorptive capacity of alginate and immobilized live and heat inactivated Phanerochaete chrysosporium. Process Biochemistry, 37, 601–610.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Jiangning Economic Development Zone Wastewater Treatment Plant (Nanjing, China) for offering the adsorbent material. The University of Hohai is thanked for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunying Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Y., Zhou, J., Wen, Y. et al. Biosorption of Heavy Metal Ions (Cu2+, Mn2+, Zn2+, and Fe3+) from Aqueous Solutions Using Activated Sludge: Comparison of Aerobic Activated Sludge with Anaerobic Activated Sludge. Appl Biochem Biotechnol 168, 2079–2093 (2012). https://doi.org/10.1007/s12010-012-9919-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9919-x

Keywords

Navigation