Skip to main content
Log in

Cryopreservative Effects of the Recombinant Ice-Binding Protein from the Arctic Yeast Leucosporidium sp. on Red Blood Cells

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Antifreeze proteins (AFPs) have important functions in many freeze-tolerant organisms. The proteins non-colligatively lower the freezing point and functionally inhibit ice recrystallization in frozen solutions. In our previous studies, we found that the Arctic yeast Leucosporidium sp. produces an AFP (LeIBP), and that the protein could be successfully produced in Pichia expression system. The present study showed that recombinant LeIBP possesses the ability to reduce the damage induced to red blood cells (RBCs) by freeze thawing. In addition to 40 % glycerol, both 0.4 and 0.8 mg/ml LeIBPs significantly reduced freeze–thaw-induced hemolysis at either rapid- (45 °C) or slow-warming (22 °C) temperatures. Post-thaw cell counts of the cryopreserved RBCs were dramatically enhanced, in particular, in 0.8 mg/ml LeIBP. Interestingly, the cryopreserved cells in the presence of LeIBP showed preserved cell size distribution. These results indicate that the ability of LeIBP to inhibit ice recrystallization helps the RBCs avoid critically damaging electrolyte concentrations, which are known as solution effects. Considering all these data, LeIBP can be thought of as a key component in improving RBC cryopreservation efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Davies, P. L., Baardsnes, J., Kuiper, M. J., & Walker, V. K. (2002). Structure and function of antifreeze proteins. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 357, 927–935.

    Article  CAS  Google Scholar 

  2. Jia, Z., & Davies, P. L. (2002). Antifreeze proteins: an unusual receptor–ligand interaction. Trends in Biochemical Sciences, 27, 101–106.

    Article  CAS  Google Scholar 

  3. Knight, C. A., & Duman, J. G. (1986). Inhibition of recrystallization of ice by insect thermal hysteresis proteins: a possible cryoprotective role. Cryobiology, 23, 256–262.

    Article  CAS  Google Scholar 

  4. Knight, C. A., DeVries, A. L., & Oolman, L. D. (1984). Fish antifreeze protein and the freezing and recrystallization of ice. Nature, 308, 295–296.

    Article  CAS  Google Scholar 

  5. Duman, J., & Horwath, K. (1983). The role of hemolymph proteins in the cold tolerance of insects. Annual Review of Physiology, 45, 261–270.

    Article  CAS  Google Scholar 

  6. Urrutia, M. E., Duman, J. G., & Knight, C. A. (1992). Plant thermal hysteresis proteins. Biochimica et Biophysica Acta, 1121, 199–206.

    Article  CAS  Google Scholar 

  7. DeVries, A. L. (1983). Antifreeze peptides and glycopeptides in cold-water fishes. Annual Review of Physiology, 45, 245–260.

    Article  CAS  Google Scholar 

  8. Davies, P. L., & Hew, C. L. (1990). Biochemistry of fish antifreeze proteins. FASEB Journal, 4, 2460–2468.

    CAS  Google Scholar 

  9. DeVries, A. L., & Cheng, C. H. C. (1992). The role of antifreeze glycopropeptides and peptides in the survival of cold-water fishes. Berlin: Springer.

    Google Scholar 

  10. Yu, S. O., Brown, A., Middleton, A. J., Tomczak, M. M., Walker, V. K., & Davies, P. L. (2010). Ice restructuring inhibition activities in antifreeze proteins with distinct differences in thermal hysteresis. Cryobiology, 61, 327–334.

    Article  CAS  Google Scholar 

  11. Kristiansen, E., & Zachariassen, K. E. (2005). The mechanism by which fish antifreeze proteins cause thermal hysteresis. Cryobiology, 51, 262–280.

    Article  CAS  Google Scholar 

  12. DeVries, A. L., & Wohlschlag, D. E. (1969). Freezing resistance in some Antarctic fishes. Science, 163, 1073–1075.

    Article  CAS  Google Scholar 

  13. Chen, G., & Jia, Z. (1999). Ice-binding surface of fish type III antifreeze. Biophysical Journal, 77, 1602–1608.

    Article  CAS  Google Scholar 

  14. Low, W. K., Lin, Q., Stathakis, C., Miao, M., Fletcher, G. L., & Hew, C. L. (2001). Isolation and characterization of skin-type, type I antifreeze polypeptides from the longhorn sculpin, Myoxocephalus octodecemspinosus. Journal of Biological Chemistry, 276, 11582–11589.

    Article  CAS  Google Scholar 

  15. Deng, G., & Laursen, R. A. (1998). Isolation and characterization of an antifreeze protein from the longhorn sculpin, Myoxocephalus octodecimspinosis. Biochimica et Biophysica Acta, 1388, 305–314.

    Article  CAS  Google Scholar 

  16. Hew, C. L., Fletcher, G. L., & Ananthanarayanan, V. S. (1980). Antifreeze proteins from the shorthorn sculpin, Myoxocephalus scorpius: isolation and characterization. Canadian Journal of Biochemistry, 58, 377–383.

    Article  CAS  Google Scholar 

  17. Hew, C. L., Wang, N. C., Yan, S., Cai, H., Sclater, A., & Fletcher, G. L. (1986). Biosynthesis of antifreeze polypeptides in the winter flounder. Characterization and seasonal occurrence of precursor polypeptides. European Journal of Biochemistry, 160, 267–272.

    Article  CAS  Google Scholar 

  18. Yamashita, Y., Miura, R., Takemoto, Y., Tsuda, S., Kawahara, H., & Obata, H. (2003). Type II antifreeze protein from a mid-latitude freshwater fish, Japanese smelt (Hypomesus nipponensis). Bioscience, Biotechnology, and Biochemistry, 67, 461–466.

    Article  CAS  Google Scholar 

  19. Atici, O., & Nalbantoglu, B. (2003). Antifreeze proteins in higher plants. Phytochemistry, 64, 1187–1196.

    Article  CAS  Google Scholar 

  20. Kawahara, H., Iwanaka, Y., Higa, S., Muryoi, N., Sato, M., Honda, M., et al. (2007). A novel, intracellular antifreeze protein in an antarctic bacterium, Flavobacterium xanthum. Cryo Letters, 28, 39–49.

    CAS  Google Scholar 

  21. Raymond, J. A., Fritsen, C., & Shen, K. (2007). An ice-binding protein from an Antarctic sea ice bacterium. FEMS Microbiology Ecology, 61, 214–221.

    Article  CAS  Google Scholar 

  22. Gilbert, J. A., Davies, P. L., & Laybourn-Parry, J. (2005). A hyperactive, Ca2+-dependent antifreeze protein in an Antarctic bacterium. FEMS Microbiology Letters, 245, 67–72.

    Article  CAS  Google Scholar 

  23. Xiao, N., Suzuki, K., Nishimiya, Y., Kondo, H., Miura, A., Tsuda, S., et al. (2010). Comparison of functional properties of two fungal antifreeze proteins from Antarctomyces psychrotrophicus and Typhula ishikariensis. FEBS Journal, 277, 394–403.

    Article  CAS  Google Scholar 

  24. Duman, J. G. (2001). Antifreeze and ice nucleator proteins in terrestrial arthropods. Annual Review of Physiology, 63, 327–357.

    Article  CAS  Google Scholar 

  25. Graether, S. P., & Sykes, B. D. (2004). Cold survival in freeze-intolerant insects: the structure and function of beta-helical antifreeze proteins. European Journal of Biochemistry, 271, 3285–3296.

    Article  CAS  Google Scholar 

  26. Lee, J. K., Park, K. S., Park, S., Park, H., Song, Y. H., Kang, S. H., et al. (2010). An extracellular ice-binding glycoprotein from an Arctic psychrophilic yeast. Cryobiology, 60, 222–228.

    Article  CAS  Google Scholar 

  27. Rous, P., & Turner, J. R. (1916). The preservation of living red blood cells in vitro: I. Methods of preservation. Journal of Experimental Medicine, 23, 219–237.

    Article  CAS  Google Scholar 

  28. Hess, J. R. (2006). An update on solutions for red cell storage. Vox Sanguinis, 91, 13–19.

    Article  CAS  Google Scholar 

  29. Hess, J. R., & Greenwalt, T. G. (2002). Storage of red blood cells: new approaches. Transfusion Medicine Reviews, 16, 283–295.

    Article  Google Scholar 

  30. Hill, H. R., Oliver, C. K., Lippert, L. E., Greenwalt, T. J., & Hess, J. R. (2001). The effects of polyvinyl chloride and polyolefin blood bags on red blood cells stored in a new additive solution. Vox Sanguinis, 81, 161–166.

    Article  CAS  Google Scholar 

  31. Heaton, W. A., Holme, S., Smith, K., Brecher, M. E., Pineda, A., AuBuchon, J. P., et al. (1994). Effects of 3-5 log10 pre-storage leucocyte depletion on red cell storage and metabolism. British Journal of Haematology, 87, 363–368.

    Article  CAS  Google Scholar 

  32. Dumont, L. J., & AuBuchon, J. P. (2008). Evaluation of proposed FDA criteria for the evaluation of radiolabeled red cell recovery trials. Transfusion, 48, 1053–1060.

    Article  Google Scholar 

  33. Pegg, D. E. (1987). Mechanisms of freezing damage. Cambridge: The Company of Biologists Ltd.

    Google Scholar 

  34. Pegg, D. E. (2007). Cryopreservation and freeze-drying protocols (2nd ed.). Totowa: Humana Press.

    Google Scholar 

  35. Smith, A. U. (1950). Prevention of haemolysis during freezing and thawing of red blood-cells. Lancet, 2, 910–911.

    Article  CAS  Google Scholar 

  36. Meryman, H. T., & Hornblower, M. (1972). A method for freezing and washing red blood cells using a high glycerol concentration. Transfusion, 12, 145–156.

    CAS  Google Scholar 

  37. Rowe, A. W., Eyster, E., & Kellner, A. (1968). Liquid nitrogen preservation of red blood cells for transfusion; a low glycerol-rapid freeze procedure. Cryobiology, 5, 119–128.

    Article  CAS  Google Scholar 

  38. Chao, H., Davies, P. L., & Carpenter, J. F. (1996). Effects of antifreeze proteins on red blood cell survival during cryopreservation. Journal of Experimental Biology, 199, 2071–2076.

    CAS  Google Scholar 

  39. Carpenter, J. F., & Hansen, T. N. (1992). Antifreeze protein modulates cell survival during cryopreservation: mediation through influence on ice crystal growth. Proceedings of the National Academy of Sciences of the United States of America, 89, 8953–8957.

    Article  CAS  Google Scholar 

  40. Kang, J. S., & Raymond, J. A. (2004). Reduction of freeze-thaw-induced hemolysis of red blood cells by an algal ice-binding protein. Cryo Letters, 25, 307–310.

    CAS  Google Scholar 

  41. Park, K. S., Lee, J. H., Park, S. I., Do, H., Kim, E. J., Kang, S. H. & Kim, H. J. (2012) Characterization of a homodimeric ice-binding protein from Leucosporidium sp. Cryobiology, 64, 286–296.

    Google Scholar 

  42. Drabkin, D. L., & Austin, J. H. (1935). Spectrophotometric studies. II. Preparations from washed blood cells; nitric oxide hemoglobin and sulfhemoglobin. Journal of Biological Chemistry, 112, 51–65.

    CAS  Google Scholar 

  43. Runck, A. H., Valeri, C. R., & Sampson, W. T. (1968). Comparison of the effects of ionic and non-ionic solutions on the volume and intracellular potassium of frozen and non-frozen human red cells. Transfusion, 8, 9–18.

    Article  CAS  Google Scholar 

  44. Smallwood, M., Worrall, D., Byass, L., Elias, L., Ashford, D., Doucet, C. J., et al. (1999). Isolation and characterization of a novel antifreeze protein from carrot (Daucus carota). Biochemical Journal, 340(Pt 2), 385–391.

    Article  CAS  Google Scholar 

  45. Schmid, P., Huvard, M. J., Lee-Stroka, A. H., Lee, J. Y., Byrne, K. M., & Flegel, W. A. (2011). Red blood cell preservation by droplet freezing with polyvinylpyrrolidone or sucrose-dextrose and by bulk freezing with glycerol. Transfusion, 51(12), 2703–2708.

    Article  CAS  Google Scholar 

  46. Hess, J. R. (2010). Red cell storage. Journal of Proteomics, 73, 368–373.

    Article  CAS  Google Scholar 

  47. Zimrin, A. B., & Hess, J. R. (2009). Current issues relating to the transfusion of stored red blood cells. Vox Sanguinis, 96, 93–103.

    Article  CAS  Google Scholar 

  48. Lovelock, J. E. (1953). The mechanism of the protective action of glycerol against haemolysis by freezing and thawing. Biochimica et Biophysica Acta, 11, 28–36.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank So Ra Yoon for helping in blood collection. This work was supported by grants from Korea Polar Research Institute (PE11100) and Korea Research Council of Fundamental Science and Technology (PG11010 and PG12010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hak Jun Kim.

Additional information

Sung Gu Lee and Hye Yeon Koh contributed equally to this manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S.G., Koh, H.Y., Lee, J.H. et al. Cryopreservative Effects of the Recombinant Ice-Binding Protein from the Arctic Yeast Leucosporidium sp. on Red Blood Cells. Appl Biochem Biotechnol 167, 824–834 (2012). https://doi.org/10.1007/s12010-012-9739-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9739-z

Keywords

Navigation