Skip to main content
Log in

A Novel Reversible pH-Triggered Release Immobilized Enzyme System

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A novel immobilized enzyme system supported by poly(acrylic acid/N,N’-methylene-bisacryl-amide) hydrogel microspheres was prepared. This system exhibited characteristics of reversible pH-triggered release. The morphology, size, and chemical structure were examined through optical microscopy, particle size analyzer, and Fourier transform infrared spectrometer. Immobilization and release features were further investigated under different conditions, including pH, time, and microsphere quantity. Results showed the microspheres were regularly spherical with 3.8 ~ 6.6 μm diameter. Loading efficiencies of bovine serum albumin immobilized by gel entrapment and adsorption methods were 93.9% and 56.2%, respectively. The pH-triggered protein release of the system occurred when medium pH was above 6.0, while it was hardly detected when medium pH was below 6.0. Release efficiencies of entrapped and adsorbed protein were 6.38% and 95.0%, respectively. Hence, adsorption method was used to immobilize trypsin. Loading efficiency of 77.2% was achieved at pH 4.0 in 1 h. Release efficiency of 91.6% was obtained under optimum pH catalysis condition set at 8.0 and trypsin was free in solutions with retention activity of 63.3%. And 51.5% of released trypsin could be reloaded in 10 min. The results indicate this kind of immobilized enzyme system offers a promising alternative for enzyme recovery in biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AAc:

acrylic acid

MBA:

N,N′-methylene-bisacrylamide

BSA:

bovine serum albumin

TEMED:

N,N,N′,N′-tetramethylethylenediamine

BAEE:

N-Benzoyl-L-arginine ethylester hydrochloride

p(AAc/MBA):

poly(acrylic acid/N,N′-methylene-bisacryl-amide)

D pH :

main particle size of p(AAc/MBA) microspheres at certain pH

ηL :

loading efficiency

ηR :

release efficiency

ηU :

recovery efficiency

Ci :

initial BSA concentration introduced

Cf :

final BSA concentration in supernatants after immobilization

Cr :

BSA concentration in supernatants after release

Cu :

BSA concentration in supernatants after recovery

Vl :

loading solution volume

Vr :

release solution volume

References

  1. Jahnz, U., Schubert, M., Baars-Hibbe, H., & Vorlop, K. D. (2003). International Journal of Pharmaceutics, 256, 199–206. doi:10.1016/S0378-5173(03)00078-4.

    Article  CAS  Google Scholar 

  2. Guilbault, G. G. (1982). Applied Biochemistry and Biotechnology, 7, 85–98. doi:10.1007/BF02798629.

    Article  CAS  Google Scholar 

  3. Brahim, S., Narinesingh, D., & Guiseppi-Elie, A. (2002). Biosensors & Bioelectronics, 17, 973–981. doi:10.1016/S0956-5663(02)00089-1.

    Article  CAS  Google Scholar 

  4. KatzirKatchalski, E. (1980). Enzyme engineering. New York, NY: Plenum Press.

    Google Scholar 

  5. Nenelson, D., & Maria, A. (2002). Enzyme and Microbial Technology, 31, 907–931. doi:10.1016/S0141-0229(02)00214-4.

    Article  Google Scholar 

  6. Piacquadio, P., & Stefano, G. D. (1997). Biotechnology Techniques, 11, 515–517. doi:10.1023/A:1018418201268.

    Article  CAS  Google Scholar 

  7. Krajewska, B. (2004). Enzyme and Microbial Technology, 35, 126–139. doi:10.1016/j.enzmictec.2003.12.013.

    Article  CAS  Google Scholar 

  8. Huckel, M., Wirth, H. J., & Hearn, M. T. W. (1996). Journal of Biochemical and Biophysical Methods, 31, 165–179. doi:10.1016/0165-022X(95)00035-P.

    Article  CAS  Google Scholar 

  9. Bailey, J. E., & Cho, Y. K. (1983). Biotechnology and Bioengineering, 25, 1923–1935. doi:10.1002/bit.260250803.

    Article  CAS  Google Scholar 

  10. Akala, E. O., Kopeckova, P., & Kopecek, J. (1998). Biomaterials, 19, 1037–1047. doi:10.1016/S0142-9612(98)00023-4.

    Article  CAS  Google Scholar 

  11. Hiroki, A., Maekawa, Y., Yashioda, M., & Katakai, R. (2001). Polymer, 42, 6403–6408. doi:10.1016/S0032-3861(01)00112-4.

    Article  CAS  Google Scholar 

  12. Okahata, Y., & Lim, H. J. (1984). Journal of the American Chemical Society, 106, 4696–4700. doi:10.1021/ja00329a010.

    Article  CAS  Google Scholar 

  13. Desponds, A., & Freitag, R. (2005). Biotechnology and Bioengineering, 91, 583–591. doi:10.1002/bit.20479.

    Article  CAS  Google Scholar 

  14. Galaev, I. Y., & Mattiasson, B. (1999). Trends in Biotechnology, 17, 335–340. doi:10.1016/S0167-7799(99)01345-1.

    Article  CAS  Google Scholar 

  15. Brahim, S., Narinesingh, D., & Guiseppi-Elie, A. (2002). Journal of Molecular Catalysis. B, Enzymatic, 18, 69–80. doi:10.1016/S1381-1177(02)00061-9.

    Article  CAS  Google Scholar 

  16. Bahar, T., & Tuncel, A. (2000). Reactive & Functional Polymers, 44, 71–78. doi:10.1016/S1381-5148(99)00081-4.

    Article  CAS  Google Scholar 

  17. Arslan, F., Tümtürk, H., Çaykara, T., Sen, M., & Güven, O. (2000). Food Chemistry, 70, 33–38. doi:10.1016/S0956-7135(99)00114-0.

    Article  CAS  Google Scholar 

  18. Kang, E. T., Tan, K. L., Kato, K., Uyama, Y., & Ikada, Y. (1996). Macromolecules, 29, 6872–6879. doi:10.1021/ma960161g.

    Article  CAS  Google Scholar 

  19. Migneault, I., Dartiguenave, C., Bertrand, M. J., Vinh, J., & Waldron, K. C. (2004). Electrophoresis, 25, 1367–1378. doi:10.1002/elps.200305861.

    Article  CAS  Google Scholar 

  20. Bryjak, J., Liesiene, J., & Kolarz, B. N. (2008). Colloids and Surfaces B, Biointerfaces, 61, 66–74. doi:10.1016/j.colsurfb.2007.07.006.

    Article  CAS  Google Scholar 

  21. Alvarez-Lorenzo, C., & Concheiro, A. (2002). Journal of Controlled Release, 80, 247–257. doi:10.1016/S0168-3659(02)00032-9.

    Article  CAS  Google Scholar 

  22. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254. doi:10.1016/0003-2697(76)90527-3.

    Article  CAS  Google Scholar 

  23. Rick, W. (1976). In H. U. Bergmeyer (Ed.), Methods of enzymatic analysis, vol. 2: Trypsin pp. 1013–1024. New York, NY: Academic Press.

    Google Scholar 

  24. Hu, J., Li, S., & Liu, B. (2006). Biotechnology Journal, 1, 75–79. doi:10.1002/biot.200500022.

    Article  CAS  Google Scholar 

  25. Gil, E. S., & Hudson, S. M. (2004). Progress in Polymer Science, 29, 1173–1222. doi:10.1016/j.progpolymsci.2004.08.003.

    Article  CAS  Google Scholar 

  26. Schwarte, L. M., Podual, K., & Peppas, N. A. (1998). Tailored polymeric materials for controlled delivery systems. Washington, DC: American Chemical Society.

    Google Scholar 

  27. Brahim, S., Narinesingh, D., & Guiseppi-Elie, A. (2003). Biomacromolecules, 4, 497–503. doi:10.1021/bm020080u.

    Article  CAS  Google Scholar 

  28. Brahim, S., Narinesingh, D., & Guiseppi-Elie, A. (2003). Biomacromolecules, 4, 1224–1231. doi:10.1021/bm034048r.

    Article  CAS  Google Scholar 

  29. Malmsten, M., & Larsson, A. (2000). Colloids and Surfaces. B, Biointerfaces, 18, 277–284. doi:10.1016/S0927-7765(99)00153-8.

    Article  CAS  Google Scholar 

  30. Wu, S., Liu, B., & Li, S. (2005). International Journal of Biological Macromolecules, 37, 263–267. doi:10.1016/j.ijbiomac.2005.12.007.

    Article  CAS  Google Scholar 

  31. Hamerska-Dudra, A., Bryjak, J., & Trochimczuk, A. W. (2007). Enzyme and Microbial Technology, 41, 197–204. doi:10.1016/j.enzmictec.2007.01.008.

    Article  CAS  Google Scholar 

  32. Gacesa, P., & Hubble, J. (1987). Enzyme technology. Oxford, UK: Open University Press.

    Google Scholar 

Download references

Acknowledgment

This study was supported by grants from the National Natural Science Foundations of China (Nos. 30772658 and 30570494).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daocheng Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gai, L., Wu, D. A Novel Reversible pH-Triggered Release Immobilized Enzyme System. Appl Biochem Biotechnol 158, 747–760 (2009). https://doi.org/10.1007/s12010-008-8373-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8373-2

Keywords

Navigation