Skip to main content
Log in

Atrial Functional Mitral and Tricuspid Regurgitation

  • Valvular Heart Disease (J Dal-Bianco, Section Editor)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Abstract

Purpose of review

Functional or secondary regurgitation of the atrioventricular valves most commonly presents as a consequence of ventricular heart disease. However, there is increasing recognition that functional mitral and/or tricuspid regurgitation can also relate to isolated atrial pathology in the absence of ventricular disease, as seen in atrial fibrillation (AF) and/or heart failure with preserved ejection fraction (HFpEF). The aim of this review article is to summarize recent data and insights into the mechanisms, diagnosis, and therapeutic options of atrial functional mitral regurgitation (AFMR) and atrial functional tricuspid regurgitation (AFTR).

Recent findings

Isolated annular dilation and dysfunction resulting in central leaflet malcoaptation is thought to be the culprit mechanism underlying AFMR and AFTR, as opposed to “ventricular” functional regurgitation caused by global or regional ventricular dilation, leaflet tethering, and annular dilation due to chronic volume overload. Both AF and HFpEF have been associated with the presence of AFMR and AFTR, which is associated with worse outcome. AFTR is more common in an elderly population with persistent AF. Rhythm control strategies have shown to be effective in reducing atrial functional regurgitation. The role of surgical and interventional repair strategies for treatment of AFMR or AFTR has yet to be determined.

Summary

AFMR and AFTR are clinically distinct forms of functional atrioventricular regurgitation, rooted in atrial remodeling and isolated annular dilation. Because of their peculiar pathophysiology, both entities might benefit from a different approach compared with functional regurgitation in the setting of ventricular disease. The burden of AFMR and AFTR is expected to increase substantially in our aging population with increasing prevalence of AF and HFpEF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AF:

Atrial fibrillation

AFMR:

Atrial functional mitral regurgitation

AFTR:

Atrial functional tricuspid regurgitation

HFpEF:

Heart failure with preserved ejection fraction

LA:

Left atrium, left atrial

LV:

Left ventricle, left ventricular

MR:

Mitral regurgitation

RAAS:

Renin-angiotensin-aldosterone system

RV:

Right ventricle

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. •• Deferm S, Bertrand PB, Verbrugge FH, Verhaert D, Rega F, Thomas JD, et al. Atrial functional mitral regurgitation: JACC review topic of the week. J Am Coll Cardiol. 2019;73(19):2465–76 A thorough review on pathophysiology and therapeutic implications of AMFR with a more profound exploration of differences with ventricular functional MR.

    PubMed  Google Scholar 

  2. Nishimura RA, Otto CM. AHA/ACC focused update of the 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. Circulation. 2017;2017:1–123.

    Google Scholar 

  3. Baumgartner H, Falk V, Bax JJ, De Bonis M, Hamm C, Holm PJ, et al. 2017 ESC/EACTS guidelines for the management of valvular heart disease. Eur Heart J. 2017;38(36):2739–86.

    Google Scholar 

  4. Chugh SS, Havmoeller R, Narayanan K, Singh D, Rienstra M, Benjamin EJ, et al. Worldwide epidemiology of atrial fibrillation: a global burden of disease 2010 study. Circulation. 2014;129(8):837–47.

    PubMed  Google Scholar 

  5. Dunlay SM, Roger VL, Redfield MM. Epidemiology of heart failure with preserved ejection fraction. Nat Rev Cardiol. 2017;14(10):591–602.

    PubMed  Google Scholar 

  6. •• Gertz ZM, Raina A, Saghy L, Zado ES, Callans DJ, Marchlinski FE, et al. Evidence of atrial functional mitral regurgitation due to atrial fibrillation: reversal with arrhythmia control. J Am Coll Cardiol. 2011;58(14):1474–81 One of the first studies to acknowledge the presence of AFMR in patients undergoing catheter ablation for AF. Maintenance of sinus rhythm associated with significant shrinkage in LA and MA-size along reductions in AFMR-severity.

    PubMed  Google Scholar 

  7. Kotecha D, Lam CSP, Van Veldhuisen DJ, Van Gelder IC, Voors AA, Rienstra M. Heart failure with preserved ejection fraction and atrial fibrillation: vicious twins. J Am Coll Cardiol. 2016;68(20):2217–28.

    PubMed  Google Scholar 

  8. Tamargo M, Obokata M, Reddy YNV, Pislaru S V., Lin G, Egbe AC, et al. Functional mitral regurgitation and left atrial myopathy in heart failure with preserved ejection fraction. Eur J Heart Fail. 2020;1–10. Important study showing that the presence of AFMR in HFpEF is not just an innocent bystander, but instead reflects greater LA myopathy and worse outcome. Importantly, these results were apparent even in mild AFMR and irrespective of the presence of AF.

  9. Zhou X, Otsuji Y, Yoshifuku S, Yuasa T, Zhang H, Takasaki K, et al. Impact of atrial fibrillation on tricuspid and mitral annular dilatation and valvular regurgitation. Circ J. 2002;66(10):913–6.

    PubMed  Google Scholar 

  10. Otsuji Y, Kumanohoso T, Yoshifuku S, Matsukida K, Koriyama C, Kisanuki A, et al. Isolated annular dilation does not usually cause important functional mitral regurgitation: comparison between patients with lone atrial fibrillation and those with idiopathic or ischemic cardiomyopathy. J Am Coll Cardiol. 2002;39(10):1651–6.

    PubMed  Google Scholar 

  11. Tanimoto M, Pai RG. Effect of isolated left atrial enlargement on mitral annular size and valve competence. Am J Cardiol. 1996;77(9):769–74.

    CAS  PubMed  Google Scholar 

  12. Dal-Bianco JP, Aikawa E, Bischoff J, Guerrero JL, Handschumacher MD, Sullivan S, et al. Active adaptation of the tethered mitral valve: insights into a compensatory mechanism for functional mitral regurgitation. Circulation. 2009;120(4):334–42.

    PubMed  PubMed Central  Google Scholar 

  13. Kim DH, Heo R, Handschumacher MD, Lee S, Choi YS, Kim KR, et al. Mitral valve adaptation to isolated annular dilation. Insights into the mechanism of atrial functional mitral regurgitation. JACC Cardiovasc Imaging. 2017;1–13. This study discusses compensatory leaflet growth in AF. Importantly, compensatory leaflet growth reaches a plateau at larger annular size and is independently associated with the development of significant AFMR.

  14. Kagiyama N, Hayashida A, Toki M, Fukuda S, Ohara M, Hirohata A, et al. Insufficient leaflet remodeling in patients with atrial fibrillation: association with the severity of mitral regurgitation. Circ Cardiovasc Imaging. 2017;10(3):e005451.

    PubMed  Google Scholar 

  15. Kagiyama N, Mondillo S, Yoshida K, Mandoli GE, Cameli M. Subtypes of atrial functional mitral regurgitation: imaging insights into their mechanisms and therapeutic implications. JACC Cardiovasc Imaging. 2020;13(3):820–35.

    PubMed  Google Scholar 

  16. • Silbiger JJ. Mechanistic insights into atrial functional mitral regurgitation: far more complicated than just left atrial remodeling. Echocardiography. 2019;36(1):164–9 Review discussing other mechanisms in AFMR.

    PubMed  Google Scholar 

  17. Machino-Ohtsuka T, Seo Y, Ishizu T, Sato K, Sugano A, Yamamoto M, Hamada-Harimura Y, Aonuma K Novel mechanistic insights into atrial functional mitral regurgitation – 3-dimensional echocardiographic study –. Circ J 2016;80(10):2240–8.

  18. Silbiger JJ. Anatomy, mechanics, and pathophysiology of the mitral annulus. Am Heart J. 2012;164(2):163–76.

    PubMed  Google Scholar 

  19. Levack MM, Jassar AS, Shang EK, Vergnat M, Woo YJ, Acker MA, et al. Three-dimensional echocardiographic analysis of mitral annular dynamics: implication for annuloplasty selection. Circulation. 2012;126(11):7–8.

    Google Scholar 

  20. Salgo IS, Gorman JH, Gorman RC, Jackson BM, Bowen FW, Plappert T, et al. Effect of annular shape on leaflet curvature in reducing mitral leaflet stress. Circulation. 2002;106(6):711–7.

    PubMed  Google Scholar 

  21. Glasson JR, Komeda M, Daughters GT, Foppiano LE, Bolger AF, Tye TL, et al. Most ovine mitral annular three-dimensional size reduction occurs before ventricular systole and is abolished with ventricular pacing. Circulation. 1997;96(9 Suppl):II-115–22; discussion II-123.

  22. Timek TA, Lai DT, Dagum P, Tibayan F, Daughters GT, Liang D, et al. Ablation of mitral annular and leaflet muscle: effects on annular and leaflet dynamics. Am J Physiol Heart Circ Physiol. 2003;285(4):H1668–74.

    CAS  PubMed  Google Scholar 

  23. Timek TA, Lai DT, Tibayan F, Daughters GT, Liang D, Dagum P, et al. Atrial contraction and mitral annular dynamics during acute left atrial and ventricular ischemia in sheep. Am J Physiol Heart Circ Physiol. 2002;283(5):H1929–35.

    CAS  PubMed  Google Scholar 

  24. Timek T, Dagum P, Lai DT, Green GR, Glasson JR, Daughters GT, et al. The role of atrial contraction in mitral valve closure. J Heart Valve Dis. 2001;10(3):312–9.

    CAS  PubMed  Google Scholar 

  25. Tang Z, Fan YT, Wang Y, Jin CN, Kwok KW, Lee APW. Mitral annular and left ventricular dynamics in atrial functional mitral regurgitation: a three-dimensional and speckle-tracking echocardiographic study. J Am Soc Echocardiogr. 2019;32(4):503–13.

    PubMed  Google Scholar 

  26. Ring L, Dutka DP, Wells FC, Fynn SP, Shapiro LM, Rana BS. Mechanisms of atrial mitral regurgitation: insights using 3D transoesophageal echo. Eur Heart J Cardiovasc Imaging. 2014;15(5):500–8.

    PubMed  Google Scholar 

  27. Prihadi EA, Delgado V, Leon MB, Enriquez-Sarano M, Topilsky Y, Bax JJ. Morphologic types of tricuspid regurgitation: characteristics and prognostic implications. JACC Cardiovasc Imaging. 2019;12(3):491–9.

    PubMed  Google Scholar 

  28. Nemoto N, Lesser JR, Pedersen WR, Sorajja P, Spinner E, Garberich RF, et al. Pathogenic structural heart changes in early tricuspid regurgitation. J Thorac Cardiovasc Surg. 150(2):323.

  29. Utsunomiya H, Itabashi Y, Mihara H, Berdejo J, Kobayashi S, Siegel RJ, et al. Functional tricuspid regurgitation caused by chronic atrial fibrillation: a real-time 3-dimensional transesophageal echocardiography study. Circ Cardiovasc Imaging. 2017;10(1). Interesting retrospective three-dimensional study which investigated changes in TA anatomy and mechanics in subjects with permanent AF.

  30. Yamasaki N, Kondo F, Kubo T, Okawa M, Matsumura Y, Kitaoka H, et al. Severe tricuspid regurgitation in the aged: atrial remodeling associated with long-standing atrial fibrillation. Vol. 48, J Cardiol. 2006. p. 315–23.

  31. Muraru D, Caravita S, Guta AC. Functional tricuspid regurgitation and atrial fibrillation: which comes first, the chicken or the egg? Cardiovasc Imaging Case Rep. 2020;

  32. Topilsky Y, Khanna A, Le Tourneau T, Park S, Michelena H, Suri R, et al. Clinical context and mechanism of functional tricuspid regurgitation in patients with and without pulmonary hypertension. 2012; Study comparing mechanistics between isolated TR and secondary TR.

  33. Addetia K, Muraru D, Veronesi F, Jenei C, Cavalli G, Besser SA, et al. 3-dimensional echocardiographic analysis of the tricuspid annulus provides new insights into tricuspid valve geometry and dynamics. JACC Cardiovasc Imaging. 2019 Mar 1;12(3):401–12.

    PubMed  Google Scholar 

  34. Muraru D, Guta A, Ochoa-jimenez RC. Functional regurgitation of atrioventricular valves and atrial fibrillation: an elusive pathophysiological link deserving further attention. J Am Soc Echocardiogr. 8:1–12.

  35. Silbiger JJ. Atrial functional tricuspid regurgitation: an underappreciated cause of secondary tricuspid regurgitation. Echocardiography. 2019;36(5):954–7.

    PubMed  Google Scholar 

  36. Spinner EM, Shannon P, Buice D, Jimenez JH, Veledar E, Del Nido PJ, et al. In vitro characterization of the mechanisms responsible for functional tricuspid regurgitation. Circulation. 2011;124(8):920–9.

    PubMed  Google Scholar 

  37. He S, Jimenez J, He Z, Yoganathan AP. Mitral leaflet geometry pertubations with papillary muscle displacement and annular dilatation: an in-vitro study of ischemic mitral regurgitation. J Heart Valve Dis. 2003;12(3):300–7.

    PubMed  Google Scholar 

  38. Ton-Nu T-T, Levine RA, Handschumacher MD, Dorer DJ, Yosefy C, Fan D, et al. Geometric determinants of functional tricuspid regurgitation insights from 3-dimensional echocardiography. Circulation. 2006;114:143–9.

    PubMed  Google Scholar 

  39. Badano LP, Hahn R, Zanella H, Araiza Garaygordobil D, Ochoa-Jimenez RC, Muraru D. Morphological assessment of the tricuspid apparatus and grading regurgitation severity in patients with functional tricuspid regurgitation: thinking outside the box. JACC Cardiovasc Imaging. 2019;12(4):652–64.

    PubMed  Google Scholar 

  40. Topilsky Y, Maltais S, Medina Inojosa J, Oguz D, Michelena H, Maalouf J, et al. Burden of tricuspid regurgitation in patients diagnosed in the community setting. JACC Cardiovasc Imaging. 2019;12(3):433–42.

    PubMed  Google Scholar 

  41. Chioncel O, Lainscak M, Seferovic PM, Anker SD, Crespo-Leiro MG, Harjola V-P, et al. Epidemiology and one-year outcomes in patients with chronic heart failure and preserved, mid-range and reduced ejection fraction: an analysis of the ESC heart failure long-term registry methods and results. Eur J Heart Fail. 2017;19:1574–85.

    CAS  PubMed  Google Scholar 

  42. Kajimoto K, Sato N, Takano T. Functional mitral regurgitation at discharge and outcomes in patients hospitalized for acute decompensated heart failure with a preserved or reduced ejection fraction. Eur J Heart Fail. 2016;18(8):1051–9.

    PubMed  Google Scholar 

  43. Abe Y, Akamatsu K, Ito K, Matsumura Y, Shimeno K, Naruko T, et al. Prevalence and prognostic significance of functional mitral and tricuspid regurgitation despite preserved left ventricular ejection fraction in atrial fibrillation patients. Circ J. 2018;82(5):1451–8.

    PubMed  Google Scholar 

  44. Topilsky Y, Nkomo VT, Vatury O, Michelena HI, Letourneau T, Suri RM, et al. Clinical outcome of isolated tricuspid regurgitation. JACC Cardiovasc Imaging. 2014;7(12):1185–94.

    PubMed  Google Scholar 

  45. Zoghbi WA, Adams D, Bonow RO, Enriquez-Sarano M, Foster E, Grayburn PA, et al. Recommendations for noninvasive evaluation of native Valvular regurgitation: a report from the American Society of Echocardiography developed in collaboration with the Society for Cardiovascular Magnetic Resonance. J Am Soc Echocardiogr. 2017;30(4):303–71.

    Google Scholar 

  46. Marsan NA, Westenberg JJM, Ypenburg C, Delgado V, van Bommel RJ, Roes SD, et al. Quantification of functional mitral regurgitation by real-time 3D echocardiography. Comparison with 3D velocity-encoded cardiac magnetic resonance. JACC Cardiovasc Imaging. 2009;2(11):1245–52.

    PubMed  Google Scholar 

  47. Zeng X, Levine RA, Hua L, Morris EL, Kang Y, Flaherty M, et al. Diagnostic value of vena contracta area in the quantification of mitral regurgitation severity by color Doppler 3D echocardiography. Circ Cardiovasc Imaging. 2011;4(5):506–13.

    PubMed  PubMed Central  Google Scholar 

  48. Bartko PE, Hu M, Hung J, Pavo N, Levine RA, Pibarot P, et al. Secondary valve regurgitation in patients with heart failure with preserved ejection fraction, heart failure with mid-range ejection fraction, and heart failure with reduced ejection fraction Philipp. Eur Heart J 2020;1–15.

  49. Lancellotti P, Tribouilloy C, Hagendorff A, Popescu BA, Edvardsen T, Pierard LA, et al. Recommendations for the echocardiographic assessment of native valvular regurgitation: an executive summary from the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2013;14(7):611–44.

    PubMed  Google Scholar 

  50. Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP, Guyton RA, et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: executive summary :a report of the American college of cardiology/American heart association task force on practice guidelines. Circulation. 2014;129:2440–92.

  51. Miglioranza MH, Mihəilə S, Muraru D, Cucchini U, Iliceto S, Badano LP. Dynamic changes in tricuspid annular diameter measurement in relation to the echocardiographic view and timing during the cardiac cycle. J Am Soc Echocardiogr. 2015;28(2):226–35.

    PubMed  Google Scholar 

  52. Dreyfus GD, Corbi PJ, Chan KMJ, Bahrami T. Secondary tricuspid regurgitation or dilatation: which should be the criteria for surgical repair? Ann Thorac Surg. 2005;79(1):127–32.

    PubMed  Google Scholar 

  53. Beppu S, Kawazoe K, Nimura Y, Nagata S, Park YD, Sakakibara H, et al. Echocardiographic study of abnormal position and motion of the posterobasal wall of the left ventricle in cases of giant left atrium. Am J Cardiol. 1982;49(2):467–72.

    CAS  PubMed  Google Scholar 

  54. Ito K, Abe Y, Takahashi Y, Shimada Y, Fukumoto H, Matsumura Y, et al. Mechanism of atrial functional mitral regurgitation in patients with atrial fibrillation: a study using three-dimensional transesophageal echocardiography. J Cardiol. 2017;70(6):584–90.

    PubMed  Google Scholar 

  55. Yoon S, Eom GH. Heart failure with preserved ejection fraction: present status and future directions. Exp Mol Med. 2019;51(12).

  56. Cleland JGF, Tendera M, Adamus J, Freemantle N, Polonski L, Taylor J. The perindopril in elderly people with chronic heart failure (PEP-CHF) study. Eur Heart J. 2006;27(19):2338–45.

    CAS  PubMed  Google Scholar 

  57. Yusuf S, Pfeffer MA, Swedberg K, Granger CB, Held P, McMurray JJV, et al. Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: the CHARM-preserved trial. Lancet. 2003;362(9386):777–81.

    CAS  PubMed  Google Scholar 

  58. Massie BM, Carson PE, McMurray JJ, Komajda M, McKelvie R, Zile MR, et al. Irbesartan in patients with heart failure and preserved ejection fraction. N Engl J Med. 2008 Dec 4;359(23):2456–67.

    CAS  PubMed  Google Scholar 

  59. Pitt B, Pfeffer MA, Assmann SF, Boineau R, Anand IS, Claggett B, et al. Spironolactone for heart failure with preserved ejection fraction. N Engl J Med. 2014;370(15):1383–92.

    CAS  PubMed  Google Scholar 

  60. Solomon SD, McMurray JJV, Anand IS, Ge J, Lam CSP, Maggioni AP, et al. Angiotensin–neprilysin inhibition in heart failure with preserved ejection fraction. N Engl J Med. 2019;381(17):1609–20.

    CAS  PubMed  Google Scholar 

  61. Ducharme A, Swedberg K, Pfeffer MA, Cohen-Solal A, Granger CB, Maggioni AP, et al. Prevention of atrial fibrillation in patients with symptomatic chronic heart failure by candesartan in the candesartan in heart failure: assessment of reduction in mortality and morbidity (CHARM) program. Am Heart J. 2006;151(5):985–91.

    PubMed  Google Scholar 

  62. Solomon SD, Zile M, Pieske B, Voors A, Shah A, Kraigher-Krainer E, et al. The angiotensin receptor neprilysin inhibitor LCZ696 in heart failure with preserved ejection fraction: a phase 2 double-blind randomised controlled trial. Lancet. 2012;380(9851):1387–95.

    CAS  PubMed  Google Scholar 

  63. Zelniker TA, Bonaca MP, Furtado RHM, Mosenzon O, Kuder JF, Murphy SA, et al. Effect of dapagliflozin on atrial fibrillation in patients with type 2 diabetes mellitus: insights from the DECLARE-TIMI 58 Trial. Circulation. 2020;141:1227–34.

    CAS  PubMed  Google Scholar 

  64. Maréchaux S, Neicu DV, Braun S, Richardson M, Delsart P, Bouabdallaoui N, et al. Functional mitral regurgitation: a link to pulmonary hypertension in heart failure with preserved ejection fraction. J Card Fail. 2011;17(10):806–12.

    PubMed  Google Scholar 

  65. Ennezat PV, Maréchaux S, Bouabdallaoui N, Le Jemtel TH. Dynamic nature of pulmonary artery systolic pressure in decompensated heart failure with preserved ejection fraction: role of functional mitral regurgitation. J Card Fail. 2013;19(11):746–52.

    PubMed  Google Scholar 

  66. Reddy ST, Belden W, Doyle M, Thompson DV, Williams R, Yamrozik J, et al. Mitral regurgitation recovery and atrial reverse remodeling following pulmonary vein isolation procedure in patients with atrial fibrillation: a clinical observation proof-of-concept cardiac MRI study. J Interv Card Electrophysiol. 2013;37(3):307–15.

    PubMed  Google Scholar 

  67. Zhao L, Jiang W, Zhou L, Gu J, Wang Y, Liu Y, et al. The role of valvular regurgitation in catheter ablation outcomes of patients with long-standing persistent atrial fibrillation. Europace. 2014;16(6):848–54.

    PubMed  Google Scholar 

  68. Dell’Era G, Rondano E, Franchi E, Marino PN. Atrial asynchrony and function before and after electrical cardioversion for persistent atrial fibrillation. Eur J Echocardiogr. 2010;11(7):577–83.

    PubMed  Google Scholar 

  69. Nishino S, Watanabe N, Ashikaga K, Morihisa K, Kuriyama N, Asada Y, et al. Reverse remodeling of the mitral valve complex after radiofrequency catheter ablation for atrial fibrillation: a serial 3-dimensional echocardiographic study. Circ Cardiovasc Imaging. 2019;12(10):e009317.

    PubMed  Google Scholar 

  70. Fender EA, Zack CJ, Nishimura RA. Isolated tricuspid regurgitation: outcomes and therapeutic interventions. Heart. 2018;104(10):798–806.

    PubMed  Google Scholar 

  71. Kihara T, Gillinov AM, Takasaki K, Fukuda S, Song JM, Shiota M, et al. Mitral regurgitation associated with mitral annular dilation in patients with lone atrial fibrillation: an echocardiographic study. Echocardiography. 2009;26(8):885–9.

    PubMed  Google Scholar 

  72. Takahashi Y, Abe Y, Sasaki Y, Bito Y, Morisaki A, Nishimura S, et al. Mitral valve repair for atrial functional mitral regurgitation in patients with chronic atrial fibrillation. Interact Cardiovasc Thorac Surg. 2015;21(2):163–8.

    PubMed  Google Scholar 

  73. Takahashi Y, Shibata T, Hattori K, Kato Y, Motoki M, Morisaki A, et al. Extended posterior leaflet extension for mitral regurgitation in giant left atrium. J Heart Valve Dis. 2014;23(1):88–90.

    PubMed  Google Scholar 

  74. Nagaura T, Hayashi A, Yamaguchi S, Yoshida J, Kamiyama T, Rader F, et al. Different influence of Mitraclip therapy on mitral valve geometry between patients with atrial and functional mitral regurgitation: a real time three-dimensional transesophageal echocardiography study. J Am Coll Cardiol. 2018;71(11):A1558.

    Google Scholar 

  75. Atsina K, Yap J, Jordan T, Aman E, Chen L, Smith TW, et al. Transcatheter mitral valve repair with Mitraclip in patients with atrial functional mitral regurgitation: results from a single center registry. J Am Coll Cardiol. 2020;75(11):1316.

    Google Scholar 

  76. Ruf TF, Kreidel F, Tamm AR, Geyer M, Hahad O, Zirbs JC, et al. Transcatheter indirect mitral annuloplasty induces annular and left atrial remodelling in secondary mitral regurgitation. ESC Hear Fail. 2020;ehf2.12710.

  77. Zack CJ, Fender EA, Chandrashekar P, Reddy YN V, Bennett CE, Stulak JM, et al. National Trends and Outcomes in Isolated Tricuspid Valve Surgery. 2017.

  78. Axtell AL, Bhambhani V, Moonsamy P, Healy EW, Picard MH, Sundt Iii TM, et al. Surgery Does Not Improve Survival in Patients With Isolated Severe Tricuspid Regurgitation. 2019;

  79. Taramasso M, Benfari G, van der Bijl P, Alessandrini H, Attinger-Toller A, Biasco L, et al. Transcatheter versus medical treatment of patients with symptomatic severe tricuspid regurgitation. J Am Coll Cardiol. 2019;74(24):2998–3008.

    CAS  PubMed  Google Scholar 

  80. Kim JB, Jung SH, Choo SJ, Chung CH, Lee JW. Clinical and echocardiographic outcomes after surgery for severe isolated tricuspid regurgitation. J Thorac Cardiovasc Surg. 2013;146(2):278–84.

    PubMed  Google Scholar 

  81. Kim YJ, Kwon DA, Kim HK, Park JS, Hahn S, Kim KH, et al. Determinants of surgical outcome in patients with isolated tricuspid regurgitation. Circulation. 2009;120(17):1672–8.

    PubMed  Google Scholar 

  82. Wylie-Sears J, Levine RA, Bischoff J. Losartan inhibits endothelial-to-mesenchymal transformation in mitral valve endothelial cells by blocking transforming growth factor-β-induced phosphorylation of ERK. Biochem Biophys Res Commun. 2014;446(4):870–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Bartko PE, Dal-Bianco JP, Guerrero JL, Beaudoin J, Szymanski C, Kim DH, et al. Effect of losartan on mitral valve changes after myocardial infarction. J Am Coll Cardiol. 2017;70(10):1232–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Iborra-Egea O, Gálvez-Montón C, Roura S, Perea-Gil I, Prat-Vidal C, Soler-Botija C, et al. Mechanisms of action of sacubitril/valsartan on cardiac remodeling: a systems biology approach npj. Syst Biol Appl. 2017;3(1):1–8.

    Google Scholar 

Download references

Acknowledgment

Sébastien Deferm, Jeroen Dauw and Pieter Vandervoort are researchers for the Limburg Clinical Research Program (LCRP) UHasselt-ZOL-Jessa, supported by the foundation Limburg Sterk Merk (LSM), Hasselt University, Ziekenhuis Oost-Limburg and Jessa Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe B. Bertrand MD, PhD.

Ethics declarations

Conflict of interest

Sébastien Deferm Jeroen Dauw, Pieter M Vandervoort and Philippe B Bertrand declare that they have no conflict of interest.

Human and animal rights and informed consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Valvular Heart Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deferm, S., Dauw, J., Vandervoort, P.M. et al. Atrial Functional Mitral and Tricuspid Regurgitation. Curr Treat Options Cardio Med 22, 30 (2020). https://doi.org/10.1007/s11936-020-00830-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11936-020-00830-0

Keywords

Navigation