Skip to main content

Advertisement

Log in

Perioperative Management of the Pediatric Cardiac Transplantation Patient

  • Pediatric and Congenital Heart Disease
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Opinion statement

The major diagnoses carried by children undergoing cardiac transplantation worldwide are congenital heart defects, cardiomyopathies, and retransplantation. The leading diagnosis in infancy is congenital heart disease, whereas cardiomyopathy predominates in older children. In view of this wide spectrum of diagnoses, the perioperative management of these children requires medical, interventional, and surgical expertise in treatment of complex congenital heart defects, end-stage heart failure, and cardiac transplantation. According to the Pediatric Heart Transplantation Survey database, the majority of children listed for cardiac transplantation eventually require higher levels of cardiac support before transplantation. The team caring for these children should be prepared to escalate support in a timely fashion in order to avoid end-organ dysfunction or a catastrophic event that will remove the patient from the cardiac transplantation list. The first step is advanced hemodynamic monitoring in a specialized pediatric cardiac intensive care unit and initiation of inotropic support. Further escalation of care should be based on careful analysis of the hemodynamic profile, end-organ function, and biochemical markers of perfusion and myocardial stress. A patient who continues to deteriorate in spite of inotropic support requires positive pressure ventilation, and if deterioration continues, mechanical circulatory support is initiated. Cardiac transplantation is a challenging operation, and even more so in children with complex congenital heart defects. The abnormal cardiovascular anatomy requires planning and anticipation of possible pitfalls as hypoplasia of the aortic arch, abnormal pulmonary arteries, and abnormal systemic and pulmonary venous connections. The time required to remove adhesions in children with prior cardiac operations increases the ischemic time of the graft and the risk of primary graft dysfunction. Assessment of pulmonary vascular resistance in children with congenital heart defects is problematic, and even children with a normal transpulmonary gradient and pulmonary vascular resistance are at increased risk of postoperative pulmonary hypertension and right ventricular graft failure. The postoperative course is directly linked to the patient’s preoperative physical condition and perioperative course. The induction of immunosuppression and the use of plasmapheresis in children with a positive cross-match may lead to further hemodynamic compromise. If severe primary graft dysfunction evolves, early initiation of extracorporeal membranous oxygenator is indicated to avoid irreversible end-organ dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as:• Of importance •• Of major importance

  1. Aurora P, Edwards LB, Kucheryavaya AY, Christie JD, et al. The Registry of the International Society for Heart and Lung Transplantation: thirteenth official pediatric lung and heart-lung transplantation report—2010. J Heart Lung Transplant. 2010;29:1129–41.

    Article  PubMed  Google Scholar 

  2. Addonizio IJ, Zangwill SD, Rosenthal DN, et al. Have changes in UNOS status system improved allocation in pediatric heart recipients? [abstract]. J Heart Lung Transplant. 2005;24:S64–5.

    Article  Google Scholar 

  3. Section on Cardiology and Cardiac Surgery, American Academy of Pediatrics. Guidelines for pediatric cardiovascular centers. Pediatrics. 2002;109:544–9.

    Article  Google Scholar 

  4. Bernal NP, Hoffman GM, Ghanayem NS, et al. Cerebral and somatic near-infrared spectroscopy in normal newborns. J Pediatr Surg. 2010;45:1306–10.

    Article  PubMed  Google Scholar 

  5. Fenton KN, Freeman K, Glogowski K, et al. The significance of baseline cerebral oxygen saturation in children undergoing congenital heart surgery. Am J Surg. 2005;190:260–3.

    Article  PubMed  Google Scholar 

  6. Kaufman J, Almodovar MC, Zuk J, et al. Correlation of abdominal site near-infrared spectroscopy with gastric tonometry in infants following surgery for congenital heart disease. Pediatr Crit Care Med. 2008;9:62–8.

    Article  PubMed  Google Scholar 

  7. Chakravarti SB, Mittnacht AJ, Katz JC, et al. Multisite near-infrared spectroscopy predicts elevated blood lactate level in children after cardiac surgery. J Cardiothorac Vasc Anesth. 2009;23:663–7.

    Article  PubMed  CAS  Google Scholar 

  8. Kurth CD, Levy WJ, McCann J. Near-infrared spectroscopy cerebral oxygen saturation thresholds for hypoxia-ischemia in piglets. J Cerebr Blood Flow Metabol. 2002;22:335–41.

    Article  CAS  Google Scholar 

  9. Edmonds HL, Ganzel BL, Austin 3rd EH. Cerebral oximetry for cardiac and vascular surgery. Semin Cardiothorac Vasc Anesth. 2004;8:147–66.

    Article  PubMed  Google Scholar 

  10. Goldman S, Sutter F, Ferdinand F, et al. Optimizing intraoperative cerebral oxygen delivery using noninvasive cerebral oximetry decreases the incidence of stroke for cardiac surgical patients. Heart Surg Forum. 2004;7:E376–81.

    Article  PubMed  Google Scholar 

  11. Levy WJ, Levin S, Chance B. Near-infrared measurement of cerebral oxygenation. Correlation with electroencephalographic ischemia during ventricular fibrillation. Anesthesiology. 1995;83:738–46.

    Article  PubMed  CAS  Google Scholar 

  12. Murkin JM, Adams S, Schaefer B, et al. Heart Surg Forum. 2004;7:515.

    Article  Google Scholar 

  13. Murkin JM, Adams SJ, Novick RJ, et al. Monitoring brain oxygen saturation during coronary bypass surgery: a randomized, prospective study. Anesth Analg. 2007;104:51–8.

    Article  PubMed  Google Scholar 

  14. Slater JP, Guarino T, Stack J, et al. Cerebral oxygen desaturation predicts cognitive decline and longer hospital stay after cardiac surgery. Ann Thorac Surg. 2009;87:36–44.

    Article  PubMed  Google Scholar 

  15. Pareznik R, Knezevic R, Voga G, Podbregar M. Changes in muscle tissue oxygenation during stagnant ischemia in septic patients. Intensive Care Med. 2006;32:87–92.

    Article  PubMed  Google Scholar 

  16. Nanas S, Gerovasili V, Dimopoulos S, Pierrakos C, Kourtidou S, et al. Inotropic agents improve the peripheral microcirculation of patients with end-stage chronic heart failure. J Card Fail. 2008;14:400–6.

    Article  PubMed  CAS  Google Scholar 

  17. Bein B, Meybohm P, Cavus E, et al. The reliability of pulse contour-derived cardiac output during hemorrhage and after vasopressor administration. Anesth Analg. 2007;105:107–13.

    Article  PubMed  Google Scholar 

  18. Hamazaoui O, Monnet X, Richard C, et al. Effects of changes in vascular tone on the agreement between pulse contour and transpulmonary thermodilution cardiac output measurements within an up to 6-h calibration-free period. Crit Care Med. 2008;36:434–40.

    Article  Google Scholar 

  19. Marik PE, Cavallazzi R, Vasu T, et al. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Crit Care Med. 2009;37:2642–7.

    Article  PubMed  Google Scholar 

  20. Newman EV, Merrell M, Genecin A, et al. The dye dilution method for describing the central circulation. An analysis of factors shaping the time-concentration curves. Circulation. 1951;4:735–46.

    PubMed  CAS  Google Scholar 

  21. Isakow W, Schuster DP. Extravascular lung water measurements and hemodynamic monitoring in the critically ill: bedside alternatives to the pulmonary artery catheter. Am J Physiol Lung Cell Mol Physiol. 2006;291:L1118–31.

    Article  PubMed  CAS  Google Scholar 

  22. Bindels AJ, Van der Hoeven JG, Graafland AD, et al. Relationships between volume and pressure measurements and stroke in critically ill patients. Crit Care. 2000;4:193–9.

    Article  PubMed  CAS  Google Scholar 

  23. Sakka SG, Bredle DL, Reinhart K, et al. Comparison between intrathoracic blood volume and cardiac filling pressures in the early phase of hemodynamic instability of patients with sepsis or septic shock. J Crit Care. 1990;14:78–83.

    Article  Google Scholar 

  24. Lichtwarck-Aschoff M, Zeravick J, Pfeiffer UJ. Intrathoracic blood volume accurately reflects circulatory volume status in critically ill patients with mechanical ventilation. Intensive Care Med. 1992;18:142–7.

    Article  PubMed  CAS  Google Scholar 

  25. Lopez-Herce J, Ruperez M, Sanchez C, et al. Haemodynamic response to acute hypovolaemia, rapid blood volume expansion and adrenaline administration in an infant animal model. Resuscitation. 2006;68:259–65.

    Article  PubMed  CAS  Google Scholar 

  26. Gazit AZ, Oren PP. Pharmaceutical management of decompensated heart failure syndrome in children: current state of the art and a new approach. Curr Treat Options Cardiovasc Med. 2009;11:403–9.

    Article  PubMed  Google Scholar 

  27. Bolling SF, Deeb GM, Morady F, et al. Automatic internal cardioverter defibrillator: a bridge to heart transplantation. J Heart Lung Transplant. 1991;10:562–6.

    PubMed  CAS  Google Scholar 

  28. Chelimsky-Fallick C, Middlekauff HR, Stevenson WG, et al. Amiodarone therapy does not compromise subsequent heart transplantation. J Am Coll Cardiol. 1992;20:1556–61.

    Article  PubMed  CAS  Google Scholar 

  29. Follmer CH, Aomine M, Yeh JZ, et al. Amiodarone-induced block of sodium current in isolated cardiac cells. J Pharmacol Exp Ther. 1987;243:187–94.

    PubMed  CAS  Google Scholar 

  30. Nishimura M, Follmer CH, Singer DH. Amiodarone blocks calcium current in single guinea pig ventricular myocytes. J Pharmacol ExpTher. 1989;251:650–9.

    CAS  Google Scholar 

  31. Kodama I, Boyett MR, Nikmaram MR, et al. Regional differences in effects of E-4031 within the sinoatrial nod. Am J Physiol. 1999;276:H793–802.

    PubMed  CAS  Google Scholar 

  32. Kodama I, Kamiya K, Toyama J. Cellular electropharmacology of amiodarone. Cardiovasc Res. 1997;35:13–29.

    Article  PubMed  CAS  Google Scholar 

  33. Remme WJ, Kruyssen HA, Look MP, et al. Hemodynamic effects and tolerability of intravenous amiodarone in patients with impaired left ventricular function. Am Heart J. 1991;122:96–103.

    Article  PubMed  CAS  Google Scholar 

  34. Pohlgeers A, Villafane J. Ventricular fibrillation in two infants treated with amiodarone hydrochloride. Pediatr Cardiol. 1995;16:82–4.

    Article  PubMed  CAS  Google Scholar 

  35. Saul JP, Scott WA, Brown S, et al. Intravenous Amiodarone Pediatric Investigators. Intravenous amiodarone for incessant tachyarrhythmias in children: a randomized, double-blind, antiarrhythmic drug trial. Circulation. 2005;112:3470–7.

    Article  PubMed  CAS  Google Scholar 

  36. Basaria S, Cooper DS. Amiodarone and the thyroid. Am J Med. 2005;118:706–14.

    Article  PubMed  CAS  Google Scholar 

  37. Ernawati DK, Stafford L, Hughes JD. Amiodarone-induced pulmonary toxicity. Br J Clin Pharmacol. 2008;66:82–7.

    Article  PubMed  CAS  Google Scholar 

  38. Department of Health and Human Services. Food and Drug Administration. Conditions of approval for a HDE. http://www.accessdata.fda.gov/cdrh_docs/pdf3/H030003a.pdf

  39. ECMO Registry of the Extracorporeal Life Support Organization (ELSO). Ann Arbor, MI: ELSO; July 2009

  40. Morales DL, Almond CS J, Aquiss RD, et al. Bridging children of all sizes to cardiac transplantation: the initial multicenter North American experience with the Berlin Heart EXCOR ventricular assist device. J Heart Lung Transplant. 2011;30:1–8.

    Article  PubMed  Google Scholar 

  41. del Nido PJ, Bailey LL, Kirklin JK. Surgical techniques in pediatric heart transplantation. In: Canter CE, Kirklin JK, editors. Pediatric heart transplantation ISHLT monograph series. Philadelphia: Elsevier; 2007. p. 83–102.

    Google Scholar 

  42. Mitchell MB, Campbell DN, Ivy D, et al. Evidence of pulmonary vascular disease after heart transplantation for Fontan circulation failure. J Thorac Cardiovasc Surg. 2004;128:693–702.

    PubMed  Google Scholar 

  43. Kirk R, Edwards LB, Kucheryavaya AY, et al. The Registry of the International Society for Heart and Lung Transplantation: thirteenth official pediatric heart transplantation report–2010. J Heart Lung Transplant. 2010;29:1119–28.

    Article  PubMed  Google Scholar 

  44. Lindenfeld J, Miller GG, Shakar SF, et al. Drug therapy in the heart transplant recipient: part I: cardiac rejection and immunosuppressive drugs. Circulation. 2004;110:3734–40.

    Article  PubMed  Google Scholar 

  45. Chin C, Pittson S, Luikart H, et al. Induction therapy for pediatric and adult heart transplantation: comparison between OKT3 and daclizumab. Transplantation. 2005;80:477–81.

    Article  PubMed  CAS  Google Scholar 

  46. Di Filippo S. Anti-IL-2 receptor antibody vs. polyclonal anti-lymphocyte antibody as induction therapy in pediatric transplantation. Pediatr Transplant. 2005;9:373–80.

    Article  PubMed  Google Scholar 

  47. Lindenfeld J, Miller GG, Shakar SF, et al. Drug therapy in the heart transplant recipient: part II: immunosuppressive drugs. Circulation. 2004;110:3858–65.

    Article  PubMed  CAS  Google Scholar 

  48. Katari SR, Magnone M, Shapiro R, et al. Clinical features of acute reversible tacrolimus (FK 506) nephrotoxicity in kidney transplant recipients. Clin Transplant. 1997;11:237–42.

    PubMed  CAS  Google Scholar 

  49. Bagnis C, Deray G, Dubois M, et al. Comparative acute nephrotoxicity of FK-506 and ciclosporin in an isolated in situ autoperfused rat kidney model. Am J Nephro. 1997;17:17–24.

    Article  CAS  Google Scholar 

  50. Taylor DO, Barr ML, Meiser BM, et al. Suggested guidelines for the use of tacrolimus in cardiac transplant recipients. J Heart Lung Transplant. 2001;20:734–8.

    Article  PubMed  CAS  Google Scholar 

  51. Montori VM, Basu A, Erwin PJ, et al. Posttransplantation diabetes: a systematic review of the literature. Diabetes Care. 2002;25:583–92.

    Article  PubMed  Google Scholar 

  52. Elion GB. The George Hitchings and Gertrude Elion Lecture: the pharmacology of azathioprine. Ann N Y Acad Sci. 1993;685:400–7.

    Article  PubMed  CAS  Google Scholar 

  53. Ensley RD, Bristow MR, Olsen SL, et al. The use of mycophenolate mofetil (RS-61443) in human heart transplant recipients. Transplantation. 1993;56:75–82.

    Article  PubMed  CAS  Google Scholar 

  54. Renlund DG, Gopinathan SK, Kfoury AG, et al. Mycophenolate mofetil (MMF) in heart transplantation: rejection prevention and treatment. Clin Transplant. 1996;10:136–9.

    PubMed  CAS  Google Scholar 

  55. Kobashigawa J, Miller L, Renlund D, et al. A randomized active-controlled trial of mycophenolate mofetil in heart transplant recipients: mycophenolate mofetil investigators. Transplantation. 1998;66:507–15.

    Article  PubMed  CAS  Google Scholar 

  56. Schimmer BP, Parker KL. Adrenocortical steroids and their synthetic analogs. In: Hardman JG, Limbard LE, Molinoff PB, Ruddar RW, Goodman AG, editors. Goodman & Gilman: The pharmacological basis of therapeutics. 9th ed. New York: McGraw-Hill; 1996. p. 1459.

    Google Scholar 

  57. Cohen DJ. Action, efficacy and toxicities: corticosteroids. In: Norman DJ, Turka LA, editors. Primer on transplantation. Mt Laurel: American Society of Transplantation; 2001. p. 146–51.

    Google Scholar 

  58. Auphan N, DiDonato JA, Rosette C, et al. Immunosuppression by glucocorticoids: inhibition of NF-kappa B activity through induction of I kappa B synthesis. Science. 1995;270:286–2990.

    Article  PubMed  CAS  Google Scholar 

  59. Scheinman RI, Cogswell PC, Lofquist AK, et al. Role of transcriptional activation of I kappa B alpha in mediation of immunosuppression by glucocorticoids. Science. 1995;270:283–6.

    Article  PubMed  CAS  Google Scholar 

  60. Hollaran PF, Gourishankar S. Principals and overview of immunosuppression. In: Norman DJ, Turka LA, editors. Primer on transplantation. Mt Laurel: American Society of Transplantation; 2001. p. 87–98.

    Google Scholar 

  61. George JF. In: Kirklin JK, Young JB, McGiffin DC, editors. Immunosuppressive modalities in heart transplantation. New York: Churchill Livingstone; 2002.

    Google Scholar 

  62. Marino PL. The ICU book. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2007.

    Google Scholar 

Download references

Disclosure

No conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avihu Z. Gazit MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gazit, A.Z., Fehr, J. Perioperative Management of the Pediatric Cardiac Transplantation Patient. Curr Treat Options Cardio Med 13, 425–443 (2011). https://doi.org/10.1007/s11936-011-0143-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11936-011-0143-8

Keywords

Navigation