Skip to main content

Advertisement

Log in

Diverse Physiological Roles of Calcitonin Gene-Related Peptide in Migraine Pathology: Modulation of Neuronal-Glial-Immune Cells to Promote Peripheral and Central Sensitization

  • Migraine and Beyond (R Cowan, Section Editor)
  • Published:
Current Pain and Headache Reports Aims and scope Submit manuscript

Abstract

The neuropeptide calcitonin gene-related peptide (CGRP) is implicated in the underlying pathology of migraine by promoting the development of a sensitized state of primary and secondary nociceptive neurons. The ability of CGRP to initiate and maintain peripheral and central sensitization is mediated by modulation of neuronal, glial, and immune cells in the trigeminal nociceptive signaling pathway. There is accumulating evidence to support a key role of CGRP in promoting cross excitation within the trigeminal ganglion that may help to explain the high co-morbidity of migraine with rhinosinusitis and temporomandibular joint disorder. In addition, there is emerging evidence that CGRP facilitates and sustains a hyperresponsive neuronal state in migraineurs mediated by reported risk factors such as stress and anxiety. In this review, the significant role of CGRP as a modulator of the trigeminal system will be discussed to provide a better understanding of the underlying pathology associated with the migraine phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ferrari MD. Migraine. Lancet. 1998;351(9108):1043–51.

    Article  CAS  PubMed  Google Scholar 

  2. Lipton R et al. Prevalence and burden of migraine in the United States: data from the American Migraine Study II. Headache. 2001;41:646–57.

    Article  CAS  PubMed  Google Scholar 

  3. Pietrobon D, Moskowitz MA. Pathophysiology of migraine. Annu Rev Physiol. 2013;75:365–91.

    Article  CAS  PubMed  Google Scholar 

  4. Burstein R, Noseda R, Borsook D. Migraine: multiple processes, complex pathophysiology. J Neurosci. 2015;35(17):6619–29. This is an excellent comprehensive review of our current understanding of migraine pathology.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Friedman DI, De ver Dye T. Migraine and the environment. Headache. 2009;49(6):941–52.

    Article  PubMed  Google Scholar 

  6. Kelman L. The triggers or precipitants of the acute migraine attack. Cephalalgia. 2007;27(5):394–402.

    Article  CAS  PubMed  Google Scholar 

  7. Goadsby P, Edvinsson L. The trigeminovascular system and migraine: studies characterizing cerebrovascular and neuropeptide changes seen in humans and cats. Ann Neurol. 1993;33:48–56.

    Article  CAS  PubMed  Google Scholar 

  8. Goadsby PJ, Edvinsson L, Joint 1994 Wolff Award Presentation. Peripheral and central trigeminovascular activation in cat is blocked by the serotonin (5HT)-1D receptor agonist 311C90. Headache. 1994;34(7):394–9.

    Article  CAS  PubMed  Google Scholar 

  9. Benemei S et al. Pain pharmacology in migraine: focus on CGRP and CGRP receptors. Neurol Sci. 2007;28 Suppl 2:S89–93.

    Article  PubMed  Google Scholar 

  10. Villalon CM, Olesen J. The role of CGRP in the pathophysiology of migraine and efficacy of CGRP receptor antagonists as acute antimigraine drugs. Pharmacol Ther. 2009;124(3):309–23.

    Article  CAS  PubMed  Google Scholar 

  11. Goadsby P, Edvinsson L. Human in vivo evidence for trigeminovascular activation in cluster headache. Neuropeptide changes and effects of acute attacks therapies. Brain. 1994;117:427–34.

    Article  PubMed  Google Scholar 

  12. Fanciullacci M et al. Increase in plasma calcitonin gene-related peptide from the extracerebral circulation during nitroglycerin-induced cluster headache attack. Pain. 1995;60(2):119–23.

    Article  CAS  PubMed  Google Scholar 

  13. Durham P, Papapetropoulos S. Biomarkers associated with migraine and their potential role in migraine management. Headache. 2013;53(8):1262–77.

    Article  PubMed  Google Scholar 

  14. van Dongen RM et al. Migraine biomarkers in cerebrospinal fluid: a systematic review and meta-analysis. Cephalalgia. 2016.

  15. Bigal, M.E., A.V. Krymchantowski, R. Hargreaves. The triptans. Expert Rev Neurother. 2009;9(5):649–59.

  16. Villalon, C.M., et al., Migraine: pathophysiology, pharmacology, treatment and future trends. Curr Vasc Pharmacol. 2003;1(1):71–84.

  17. Olesen J et al. Calcitonin gene-related peptide receptor antagonist BIBN 4096 BS for the acute treatment of migraine. N Eng J Med. 2004;350:1104–10.

  18. Lassen L et al. CGRP may play a causative role in migraine. Cephalalgia. 2002;22(1):54–61.

    Article  CAS  PubMed  Google Scholar 

  19. Haut SR, Bigal ME, Lipton RB. Chronic disorders with episodic manifestations: focus on epilepsy and migraine. Lancet Neurol. 2006;5(2):148–57.

  20. Ren K, Dubner R. Central nervous system plasticity and persistent pain. J Orofac Pain. 1999;13(3):155–63. discussion 164-71.

    CAS  PubMed  Google Scholar 

  21. Bellamy J et al. Nitric oxide regulation of calcitonin gene-related peptide gene expression in rat trigeminal ganglia neurons. Eur J Neurosci. 2006;23(8):2057–66.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Cady RK et al. Sinus headache: a neurology, otolaryngology, allergy, and primary care consensus on diagnosis and treatment. Mayo Clin Proc. 2005;80(7):908–16.

  23. Ballegaard V et al. Are headache and temporomandibular disorders related? A blinded study. Cephalalgia. 2008;28(8):832–41.

    Article  CAS  PubMed  Google Scholar 

  24. Bevilaqua Grossi D, Lipton RB, Bigal ME. Temporomandibular disorders and migraine chronification. Curr Pain Headache Rep. 2009;13(4):314–8.

    Article  PubMed  Google Scholar 

  25. Dahan H et al. Specific and number of comorbidities are associated with increased levels of temporomandibular pain intensity and duration. J Headache Pain. 2015;16:528.

    Article  PubMed  Google Scholar 

  26. Graff-Radford SB. Temporomandibular disorders and headache. Dent Clin N Am. 2007;51(1):129–44. vi-vii.

    Article  PubMed  Google Scholar 

  27. Amara S et al. Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature. 1982;298:240–4.

    Article  CAS  PubMed  Google Scholar 

  28. Rosenfeld M et al. Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing. Nature. 1983;304:129–35.

    Article  CAS  PubMed  Google Scholar 

  29. Fischer JA, Born W. Novel peptides from the calcitonin gene: expression, receptors and biological function. Peptides. 1985;6 Suppl 3:265–71.

    Article  CAS  PubMed  Google Scholar 

  30. Mulderry PK et al. Differential expression of alpha-CGRP and beta-CGRP by primary sensory neurons and enteric autonomic neurons of the rat. Neuroscience. 1988;25(1):195–205.

    Article  CAS  PubMed  Google Scholar 

  31. Amara SG et al. Expression in brain of a messenger RNA encoding a novel neuropeptide homologous to calcitonin gene-related peptide. Science. 1985;229(4718):1094–7.

    Article  CAS  PubMed  Google Scholar 

  32. van Rossum D, Hanisch U, Quirion R. Neuroanatomical localization, pharmacological characterization and functions of CGRP, related peptides and their receptors. Neurosci Biobehav Rev. 1997;21(5):649–78.

    Article  PubMed  Google Scholar 

  33. Wimalawansa S. Calcitonin gene-related peptide and its receptors: molecular genetics, physiology, pathophysiology, and therapeutic potentials. Endocr Rev. 1996;17(5):533–85.

    Article  CAS  PubMed  Google Scholar 

  34. Poyner D et al. International Union of Pharmacology. XXXII. The mammalian calcitonin gene-related peptides, adrenomedullin, amylin, and calcitonin receptors. Pharmacol Rev. 2002;54(2):233–46.

    Article  CAS  PubMed  Google Scholar 

  35. Mallee J et al. Receptor activity-modifying protein 1 determines the species selectivity of non-peptide CGRP receptor antagonists. J Biol Chem. 2002;277(16):14294–8.

    Article  CAS  PubMed  Google Scholar 

  36. Russell FA et al. Calcitonin gene-related peptide: physiology and pathophysiology. Physiol Rev. 2014;94(4):1099–142. This review provides a thorough summary of the diverse physiological and pathophysiological roles of CGRP following its release from sensory neurons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Messlinger K, Fischer MJ, Lennerz JK. Neuropeptide effects in the trigeminal system: pathophysiology and clinical relevance in migraine. Keio J Med. 2011;60(3):82–9.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang Z et al. Sensitization of calcitonin gene-related peptide receptors by receptor activity-modifying protein-1 in the trigeminal ganglion. J Neurosci. 2007;27(10):2693–703.

    Article  CAS  PubMed  Google Scholar 

  39. Li J, Vause C, Durham P. Calcitonin gene-related peptide stimulation of nitric oxide synthesis and release from trigeminal ganglion glial cells. Brain Res. 2008;1196:22–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Thalakoti, S., et al., Neuron-Glia signaling in trigeminal ganglion: Implications for migraine pathology. Headache, 2007. 47(7): p. 1008–1023.

  41. Levy D et al. Mast cell degranulation activates a pain pathway underlying migraine headache. Pain. 2007;130(1-2):166–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Peroutka SJ. Neurogenic inflammation and migraine: implications for the therapeutics. Mol Interv. 2005;5(5):304–11.

    Article  CAS  PubMed  Google Scholar 

  43. Levy D, Jakubowski M, Burstein R. Disruption of communication between peripheral and central trigeminovascular neurons mediates the antimigraine action of 5HT 1B/1D receptor agonists. Proc Natl Acad Sci U S A. 2004;101(12):4274–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Seybold VS. The role of peptides in central sensitization. Handb Exp Pharmacol. 2009;194:451–91.

    Article  CAS  PubMed  Google Scholar 

  45. Xie YF. Glial involvement in trigeminal central sensitization. Acta Pharmacol Sin. 2008;29(6):641–5.

    Article  CAS  PubMed  Google Scholar 

  46. Old EA, Clark AK, Malcangio M. The role of glia in the spinal cord in neuropathic and inflammatory pain. Handb Exp Pharmacol. 2015;227:145–70.

    Article  PubMed  Google Scholar 

  47. Durham PL, Russo AF. Regulation of calcitonin gene-related peptide secretion by a serotonergic antimigraine drug. J Neurosci. 1999;19(9):3423–9.

    CAS  PubMed  Google Scholar 

  48. Durham PL, Garrett FG. Emerging importance of neuron-satellite glia interactions within trigeminal ganglia in craniofacial pain. Open Pain J. 2010;3:3–13.

    CAS  Google Scholar 

  49. Freeman S, Patil V, Durham P. Nitric oxide-proton stimulation of trigeminal ganglion neurons increases mitogen-activated protein kinase and phosphatase expression in neurons and satellite glial cells. Neuroscience. 2008;157:542–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Vause CV, Durham PL. CGRP stimulation of iNOS and NO release from trigeminal ganglion glial cells involves mitogen-activated protein kinase pathways. J Neurochem. 2009;110(3):811–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ren K. Neuron, glia and reciprocal relationships in pain processing. Open Pain J. 2009;2:7–31.

    PubMed  PubMed Central  Google Scholar 

  52. Milligan ED, Watkins LR. Pathological and protective roles of glia in chronic pain. Nat Rev Neurosci. 2009;10(1):23–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Meng J et al. Activation of TRPV1 mediates calcitonin gene-related peptide release, which excites trigeminal sensory neurons and is attenuated by a retargeted botulinum toxin with anti-nociceptive potential. J Neurosci. 2009;29(15):4981–92.

    Article  CAS  PubMed  Google Scholar 

  54. Meng J et al. Synaptobrevin I mediates exocytosis of CGRP from sensory neurons and inhibition by botulinum toxins reflects their anti-nociceptive potential. J Cell Sci. 2007;120(Pt 16):2864–74.

    Article  CAS  PubMed  Google Scholar 

  55. Durham PL, Cady R. Regulation of calcitonin gene-related peptide secretion from trigeminal nerve cells by botulinum toxin type A: implications for migraine therapy. Headache. 2004;44(1):35–42. Discussion 42-3.

    Article  PubMed  Google Scholar 

  56. Dolly JO, Aoki KR. The structure and mode of action of different botulinum toxins. Eur J Neurol. 2006;13 Suppl 4:1–9.

    Article  PubMed  Google Scholar 

  57. Bigal M et al. Satisfaction with current migraine therapy: experience from 3 centers in US and Sweden. Headache. 2007;47(4):475–9.

    Article  PubMed  Google Scholar 

  58. Diener HC et al. OnabotulinumtoxinA for treatment of chronic migraine: results from the double-blind, randomized, placebo-controlled phase of the PREEMPT 2 trial. Cephalalgia. 2010;30(7):804–14.

    Article  CAS  PubMed  Google Scholar 

  59. Durham PL, Masterson CG. Two mechanisms involved in trigeminal CGRP release: implications for migraine treatment. Headache. 2013;53(1):67–80.

    Article  PubMed  Google Scholar 

  60. Vause C et al. Effect of carbon dioxide on calcitonin gene-related peptide secretion from trigeminal neurons. Headache. 2007;47(10):1385–97.

    PubMed  PubMed Central  Google Scholar 

  61. Yan J et al. Dural afferents express acid-sensing ion channels: a role for decreased meningeal pH in migraine headache. Pain. 2011;152(1):106–13.

    Article  CAS  PubMed  Google Scholar 

  62. Bolay H, Moskowitz MA. Mechanisms of pain modulation in chronic syndromes. Neurology. 2002;59(5 Suppl 2):S2–7.

    Article  CAS  PubMed  Google Scholar 

  63. Hargreaves RJ, Shepheard SL. Pathophysiology of migraine—new insights. Can J Neurol Sci. 1999;26 Suppl 3:S12–9.

    Article  PubMed  Google Scholar 

  64. Mamet J et al. Proinflammatory mediators, stimulators of sensory neuron excitability via the expression of acid-sensing ion channels. J Neurosci. 2002;22(24):10662–70.

    CAS  PubMed  Google Scholar 

  65. Lingueglia E. Acid-sensing ion channels in sensory perception. J Biol Chem. 2007;282(24):17325–9.

    Article  CAS  PubMed  Google Scholar 

  66. Voilley N et al. Nonsteroid anti-inflammatory drugs inhibit both the activity and the inflammation-induced expression of acid-sensing ion channels in nociceptors. J Neurosci. 2001;21(20):8026–33.

    CAS  PubMed  Google Scholar 

  67. Brandes JL et al. Sumatriptan-naproxen for acute treatment of migraine: a randomized trial. JAMA. 2007;297(13):1443–54.

    Article  CAS  PubMed  Google Scholar 

  68. Holland PR et al. Acid-sensing ion channel 1: a novel therapeutic target for migraine with aura. Ann Neurol. 2012;72(4):559–63.

    Article  CAS  PubMed  Google Scholar 

  69. Cady RK, Schreiber CP. Sinus problems as a cause of headache refractoriness and migraine chronification. Curr Pain Headache Rep. 2009;13(4):319–25.

    Article  PubMed  Google Scholar 

  70. Oh EJ, Weinreich D. Chemical communication between vagal afferent somata in nodose ganglia of the rat and the guinea pig in vitro. J Neurophysiol. 2002;87:2801–7.

    CAS  PubMed  Google Scholar 

  71. Amir R, Devor M. Chemically mediated cross-excitation in rat dorsal root ganglia. J Neurosci. 1996;16(15):4733–41.

    CAS  PubMed  Google Scholar 

  72. Amir R, Devor M. Functional cross-excitation between afferent A- and C-neurons in dorsal root ganglia. Neuroscience. 2000;95(1):189–95.

    Article  CAS  PubMed  Google Scholar 

  73. Ulrich-Lai, Y.M., et al., Capsaicin-evoked release of immunoreactive calcitonin gene-related peptide from rat trigeminal ganglion: evidence for intraganglionic neurotransmission. Pain, 2001. 91(3): p. 219-26.

  74. Cheng J, Ji R. Intracellular signaling in primary sensory neurons and persistent pain. Neurochem Res. 2008;33(10):1970–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Neubert JK et al. Inflammation-induced changes in primary afferent-evoked release of substance P within trigeminal ganglia in vivo. Brain Res. 2000;871(2):181–91.

    Article  CAS  PubMed  Google Scholar 

  76. Arinci A et al. Molecular correlates of temporomandibular joint disease. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005;99:666–70.

    Article  PubMed  Google Scholar 

  77. Takahashi T et al. Association between arthroscopic diagnosis of temporomandibular joint osteoarthritis and synovial fluid nitric oxide levels. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1999;88:129–36.

    Article  CAS  PubMed  Google Scholar 

  78. Damodaram S et al. Tonabersat inhibits trigeminal ganglion neuronal-satellite glial cell signaling. Headache. 2009;49(1):5–20.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Buse DC et al. Psychiatric comorbidities of episodic and chronic migraine. J Neurol. 2013;260(8):1960–9.

    Article  PubMed  Google Scholar 

  80. Barry CM et al. Sensory nerve fibers containing calcitonin gene-related peptide in gastrocnemius, latissimus dorsi and erector spinae muscles and thoracolumbar fascia in mice. Neuroscience. 2015;291:106–17.

    Article  CAS  PubMed  Google Scholar 

  81. Dudek A et al. Immunohistochemical properties of motoneurons supplying the trapezius muscle in the rat. Pol J Vet Sci. 2011;14(2):199–205.

    CAS  PubMed  Google Scholar 

  82. Tsukagoshi M, Goris RC, Funakoshi K. Differential distribution of vanilloid receptors in the primary sensory neurons projecting to the dorsal skin and muscles. Histochem Cell Biol. 2006;126(3):343–52.

    Article  CAS  PubMed  Google Scholar 

  83. Graven-Nielsen T, Arendt-Nielsen L. Peripheral and central sensitization in musculoskeletal pain disorders: an experimental approach. Curr Rheumatol Rep. 2002;4(4):313–21.

    Article  PubMed  Google Scholar 

  84. Neugebauer V, Rumenapp P, Schaible HG. Calcitonin gene-related peptide is involved in the spinal processing of mechanosensory input from the rat’s knee joint and in the generation and maintenance of hyperexcitability of dorsal horn-neurons during development of acute inflammation. Neuroscience. 1996;71(4):1095–109.

    Article  CAS  PubMed  Google Scholar 

  85. Sun R et al. Calcitonin gene-related peptide receptor activation produces PKA- and PKC-dependent mechanical hyperalgesia and central sensitization. J Neurophysiol. 2004;92:2859–66.

    Article  CAS  PubMed  Google Scholar 

  86. Yu LC, Hansson P, Lundeberg T. The calcitonin gene-related peptide antagonist CGRP8-37 increases the latency to withdrawal responses in rats. Brain Res. 1994;653(1-2):223–30.

    Article  CAS  PubMed  Google Scholar 

  87. Kawamura M et al. Antinociceptive effect of intrathecally administered antiserum against calcitonin gene-related peptide on thermal and mechanical noxious stimuli in experimental hyperalgesic rats. Brain Res. 1989;497(1):199–203.

    Article  CAS  PubMed  Google Scholar 

  88. Evidente VG, Adler CH. An update on the neurologic applications of botulinum toxins. Curr Neurol Neurosci Rep. 2010;10(5):338–44.

    Article  CAS  PubMed  Google Scholar 

  89. Dolly O. Synaptic transmission: inhibition of neurotransmitter release by botulinum toxins. Headache. 2003;43 Suppl 1:S16–24.

    Article  PubMed  Google Scholar 

  90. Morch CD et al. Convergence of cutaneous, musculoskeletal, dural and visceral afferents onto nociceptive neurons in the first cervical dorsal horn. Eur J Neurosci. 2007;26(1):142–54.

    Article  CAS  PubMed  Google Scholar 

  91. Fernandez-de-las-Penas C et al. The role of myofascial trigger points in musculoskeletal pain syndromes of the head and neck. Curr Pain Headache Rep. 2007;11(5):365–72.

    Article  PubMed  Google Scholar 

  92. Lam DK, Sessle BJ, Hu JW. Glutamate and capsaicin effects on trigeminal nociception II: activation and central sensitization in brainstem neurons with deep craniofacial afferent input. Brain Res. 2009;1253:48–59.

    Article  CAS  PubMed  Google Scholar 

  93. Bach-Rojecky L, Lackovic Z. Central origin of the antinociceptive action of botulinum toxin type A. Pharmacol Biochem Behav. 2009;94(2):234–8.

    Article  CAS  PubMed  Google Scholar 

  94. Gobel H et al. Efficacy and safety of a single botulinum type A toxin complex treatment (Dysport) for the relief of upper back myofascial pain syndrome: results from a randomized double-blind placebo-controlled multicentre study. Pain. 2006;125(1-2):82–8.

    Article  PubMed  Google Scholar 

  95. Gungor NZ, Pare D. CGRP inhibits neurons of the bed nucleus of the stria terminalis: implications for the regulation of fear and anxiety. J Neurosci. 2014;34(1):60–5. This study provides evidence of the emerging role of CGRP in anxiety-related behaviors that is likely to have important implications for progression of migraine pathology.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Choi DC et al. Bed nucleus of the stria terminalis subregions differentially regulate hypothalamic-pituitary-adrenal axis activity: implications for the integration of limbic inputs. J Neurosci. 2007;27(8):2025–34.

    Article  CAS  PubMed  Google Scholar 

  97. Rouwette T et al. The amygdala, a relay station for switching on and off pain. Eur J Pain. 2012;16(6):782–92.

    Article  CAS  PubMed  Google Scholar 

  98. Veinante P, Yalcin I, Barrot M. The amygdala between sensation and affect: a role in pain. J Mol Psychiatry. 2013;1(1):9.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Todd AJ. Neuronal circuitry for pain processing in the dorsal horn. Nat Rev Neurosci. 2010;11(12):823–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul L. Durham.

Ethics declarations

Conflict of Interest

Paul L. Durham declares no conflict of interest.

Human and Animal Rights and Informed Consent

All studies by Paul Durham involving animal and/or human subjects were performed after approval by the appropriate institutional review boards. When required, written informed consent was obtained from all participants.

Additional information

This article is part of the Topical Collection on Migraine and Beyond

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durham, P.L. Diverse Physiological Roles of Calcitonin Gene-Related Peptide in Migraine Pathology: Modulation of Neuronal-Glial-Immune Cells to Promote Peripheral and Central Sensitization. Curr Pain Headache Rep 20, 48 (2016). https://doi.org/10.1007/s11916-016-0578-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11916-016-0578-4

Keywords

Navigation