Skip to main content

Advertisement

Log in

Management of Elevated Intracranial Pressure: a Review

  • Critical Care (Stephan A. Mayer, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Principles of intracranial pressure (ICP) management continue to be an essential part of the neurointensivist’s skillset as appropriate treatment decisions can prevent secondary injury to the central nervous system. This review of the literature aims to: discuss commonly encountered pathologies associated with increased ICP, summarize diagnostic approaches used in evaluating ICP, and present evidence-based treatment paradigms that drive clinical care in intensive care units.

Recent Findings

Recent topics of discussion include invasive and non-invasive modalities of diagnosis and monitoring, recent developments in hypothermia, hyperosmolar therapy, pharmacological interventions, and surgical therapies. The authors also present an example of an algorithm used within our system of hospitals for managing patients with elevated ICP.

Summary

Recent advances have shown the mortality benefits in appropriately recognizing and treating increased ICP. Multiple modalities of treatment have been explored, and evidence has shown benefit in some. Further work continues to provide clarity in the appropriate management of intracranial hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ICP:

intracranial pressure

EVD:

external ventricular drain

IPM:

intraparenchymal monitors

TBI:

traumatic brain injury

BEST:TRIP:

Benchmark Evidence from South American Trials: Treatment of Intracranial Pressure

CSF:

cerebrospinal fluid

US:

ultrasound, ultrasonography

ONSD-:

optic nerve sheath diameter

AUC:

area under the curve

ETD:

eyeball transverse diameter

TCD:

transcranial Doppler

CPP:

cerebral perfusion pressure

ICU:

Intensive care unit

NPi:

neurological pupil index

cEEG:

continuous electroencephalography

CBF:

cerebral blood flow

CSD:

cortical spreading depression

HOT:

hyperosmolar therapy

ICH:

intracranial hemorrhage

HTS:

hypertonic saline

IV:

intravenous

GAMES-RP:

glyburide advantage in malignant edema and stroke

MRC-CRASH:

Corticosteroids Randomisation after Significant Head injury

NABISH:

National Acute Brain Injury Study: Hypothermia

POLAR:

Prophylactic Hypothermia Trial to Lessen Traumatic Brain Injury

TTM:

therapeutic temperature modulation

GOS-E:

extended Glasgow outcome scale

RESCUEicp:

Randomised Evaluation of Surgery with Craniectomy for Uncontrollable Elevation of ICP

DECRA:

Decompressive Craniectomy trial

CLEAR-III:

Clot Lysis: Evaluating Accelerated Resolution of Intraventricular Hemorrhage Phase-III

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Chesnut RM, Temkin N, Carney N, et al. A trial of intracranial-pressure monitoring in traumatic brain injury. N Engl J Med. 2012;367:2471–81. https://doi.org/10.1056/NEJMoa1207363.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Ropper AH. Brain in a box. N Engl J Med. 2012;367:2539–41. https://doi.org/10.1056/NEJMe1212289.

    Article  PubMed  CAS  Google Scholar 

  3. Bales JW, Bonow RH, Buckley RT, Barber J, Temkin N, Chesnut RM. Primary external ventricular drainage catheter versus intraparenchymal icp monitoring: outcome analysis. Neurocrit Care. 2019;31:11–21. https://doi.org/10.1007/s12028-019-00712-9.

    Article  PubMed  Google Scholar 

  4. Aiolfi A, Khor D, Cho J, Benjamin E, Inaba K, Demetriades D. Intracranial pressure monitoring in severe blunt head trauma: does the type of monitoring device matter? J Neurosurg. 2018;128:828–33. https://doi.org/10.3171/2016.11.JNS162198.

    Article  PubMed  Google Scholar 

  5. Liu H, Wang W, Cheng F, Yuan Q, Yang J, Hu J, et al. External ventricular drains versus intraparenchymal intracranial pressure monitors in traumatic brain injury: a prospective observational study. World Neurosurg. 2015;83:794–800. https://doi.org/10.1016/j.wneu.2014.12.040.

    Article  PubMed  Google Scholar 

  6. Tavakoli S, Peitz G, Ares W, et al. Complications of invasive intracranial pressure monitoring devices in neurocritical care. Neurosurg Focus. 2017;43:E6. https://doi.org/10.3171/2017.8.FOCUS17450.

    Article  PubMed  Google Scholar 

  7. Rajajee V, Vanaman M, Fletcher JJ, Jacobs TL. Optic nerve ultrasound for the detection of raised intracranial pressure. Neurocrit Care. 2011;15:506–15. https://doi.org/10.1007/s12028-011-9606-8.

    Article  PubMed  Google Scholar 

  8. Rosenberg JB, Shiloh AL, Savel RH, Eisen LA. Non-invasive methods of estimating intracranial pressure. Neurocrit Care. 2011;15:599–608. https://doi.org/10.1007/s12028-011-9545-4.

    Article  PubMed  Google Scholar 

  9. Kim SE, Hong EP, Kim HC, et al. Ultrasonographic optic nerve sheath diameter to detect increased intracranial pressure in adults: a meta-analysis. Acta Radiol. 2019;60:221–9. https://doi.org/10.1177/0284185118776501.

    Article  PubMed  Google Scholar 

  10. • Robba C, Santori G, Czosnyka M, et al. Optic nerve sheath diameter measured sonographically as non-invasive estimator of intracranial pressure: a systematic review and meta-analysis. Intensive Care Med. 2018;44:1284–94. https://doi.org/10.1007/s00134-018-5305-7 This study was a meta-analysis looking at multiple studies, and they showed that there is utility in using ONSD as a means of detecting increased ICP in a present versus absent fashion.

    Article  PubMed  Google Scholar 

  11. del Saz-Saucedo P, Redondo-Gonzalez O, Mateu-Mateu A, et al. Sonographic assessment of the optic nerve sheath diameter in the diagnosis of idiopathic intracranial hypertension. J Neurol Sci. 2016;361:122–7. https://doi.org/10.1016/j.jns.2015.12.032.

    Article  PubMed  Google Scholar 

  12. Agrawal A, Cheng R, Tang J, Madhok DY. Comparison of two techniques to measure optic nerve sheath diameter in patients at risk for increased intracranial pressure. Crit Care Med. 2019;47:e495–501. https://doi.org/10.1097/CCM.0000000000003742.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Du J, Deng Y, Li H, et al. Ratio of optic nerve sheath diameter to eyeball transverse diameter by ultrasound can predict intracranial hypertension in traumatic brain injury patients: a prospective study. Neurocrit Care. 2019. https://doi.org/10.1007/s12028-019-00762-z.

  14. Vaiman M, Sigal T, Kimiagar I, et al. Noninvasive assessment of the intracranial pressure in non-traumatic intracranial hemorrhage. J Clin Neurosci. 2016;34:177–81. https://doi.org/10.1016/j.jocn.2016.06.008.

    Article  PubMed  Google Scholar 

  15. Rajajee V, Williamson CA, Fontana RJ, Courey AJ, Patil PG. Noninvasive intracranial pressure assessment in acute liver failure. Neurocrit Care. 2018;29:280–90. https://doi.org/10.1007/s12028-018-0540-x.

    Article  PubMed  Google Scholar 

  16. Czosnyka M, Matta BF, Smielewski P, et al. Cerebral perfusion pressure in head-injured patients: a noninvasive assessment using transcranial Doppler ultrasonography. J Neurosurg. 1998;88:802–8. https://doi.org/10.3171/jns.1998.88.5.0802.

    Article  PubMed  CAS  Google Scholar 

  17. Robba C, Cardim D, Sekhon M, Budohoski K, Czosnyka M. Transcranial Doppler: a stethoscope for the brain-neurocritical care use. J Neurosci Res. 2018;96:720–30. https://doi.org/10.1002/jnr.24148.

    Article  PubMed  CAS  Google Scholar 

  18. Robba C, Donnelly J, Cardim D, Tajsic T, Cabeleira M, Citerio G, et al. Optic nerve sheath diameter ultrasonography at admission as a predictor of intracranial hypertension in traumatic brain injured patients: a prospective observational study. J Neurosurg. 2019:1–7. https://doi.org/10.3171/2018.11.JNS182077.

  19. Chen JW, Gombart ZJ, Rogers S, Gardiner SK, Cecil S, Bullock RM. Pupillary reactivity as an early indicator of increased intracranial pressure: The introduction of the Neurological Pupil index. Surg Neurol Int. 2011;2:82. https://doi.org/10.4103/2152-7806.82248.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Ong C, Hutch M, Barra M, Kim A, Zafar S, Smirnakis S. Effects of osmotic therapy on pupil reactivity: quantification using pupillometry in critically ill neurologic patients. Neurocrit Care. 2019;30:307–15. https://doi.org/10.1007/s12028-018-0620-y.

    Article  PubMed  CAS  Google Scholar 

  21. Jahns FP, Miroz JP, Messerer M, Daniel RT, Taccone FS, Eckert P, et al. Quantitative pupillometry for the monitoring of intracranial hypertension in patients with severe traumatic brain injury. Crit Care. 2019;23:155. https://doi.org/10.1186/s13054-019-2436-3.

  22. Newey CR, Sarwal A, Hantus S. Continuous electroencephalography (cEEG) changes precede clinical changes in a case of progressive cerebral edema. Neurocrit Care. 2013;18:261–5. https://doi.org/10.1007/s12028-011-9650-4.

    Article  PubMed  CAS  Google Scholar 

  23. Kurtz P, Hanafy KA, Claassen J. Continuous EEG monitoring: is it ready for prime time? Curr Opin Crit Care. 2009;15:99–109. https://doi.org/10.1097/MCC.0b013e3283294947.

    Article  PubMed  Google Scholar 

  24. Hartings JA, Strong AJ, Fabricius M, Manning A, Bhatia R, Dreier JP, et al. Spreading depolarizations and late secondary insults after traumatic brain injury. J Neurotrauma. 2009;26:1857–66. https://doi.org/10.1089/neu.2009.0961.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Brain Trauma F, American Association of Neurological S, Congress of Neurological S, et al. Guidelines for the management of severe traumatic brain injury. II. Hyperosmolar therapy. J Neurotrauma. 2007;24(Suppl 1):S14–20. https://doi.org/10.1089/neu.2007.9994.

    Article  Google Scholar 

  26. Farrokh S, Cho SM, Suarez JI. Fluids and hyperosmolar agents in neurocritical care: an update. Curr Opin Crit Care. 2019;25:105–9. https://doi.org/10.1097/MCC.0000000000000585.

    Article  PubMed  Google Scholar 

  27. Diringer MN. New trends in hyperosmolar therapy? Curr Opin Crit Care. 2013;19:77–82. https://doi.org/10.1097/MCC.0b013e32835eba30.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Rangel-Castilla L, Gopinath S, Robertson CS. Management of intracranial hypertension. Neurol Clin. 2008;26:521–41, x. https://doi.org/10.1016/j.ncl.2008.02.003.

    Article  PubMed  Google Scholar 

  29. Gu J, Huang H, Huang Y, Sun H, Xu H. Hypertonic saline or mannitol for treating elevated intracranial pressure in traumatic brain injury: a meta-analysis of randomized controlled trials. Neurosurg Rev. 2019;42:499–509. https://doi.org/10.1007/s10143-018-0991-8.

    Article  PubMed  Google Scholar 

  30. Mangat HS, Chiu YL, Gerber LM, Alimi M, Ghajar J, Härtl R. Hypertonic saline reduces cumulative and daily intracranial pressure burdens after severe traumatic brain injury. J Neurosurg. 2015;122:202–10. https://doi.org/10.3171/2014.10.JNS132545.

    Article  PubMed  Google Scholar 

  31. •• Mangat HS, Wu X, Gerber LM, et al. Hypertonic saline is superior to mannitol for the combined effect on intracranial pressure and cerebral perfusion pressure burdens in patients with severe traumatic brain injury. Neurosurgery. 2019. https://doi.org/10.1093/neuros/nyz046 This study utilized a TBI cohort to assess for differences in the degree of increased ICP, decreased CPP, and the degree of their concomittance when administered either hypertonic saline or mannitol; the study showed hypertonic saline superiority in decreasing the cumulative burden of concomitant increased ICP with decreased CPP.

  32. King ZA, Sheth KN, Kimberly WT, Simard JM. Profile of intravenous glyburide for the prevention of cerebral edema following large hemispheric infarction: evidence to date. Drug Des Devel Ther. 2018;12:2539–52. https://doi.org/10.2147/DDDT.S150043.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Simard JM, Sheth KN, Kimberly WT, Stern BJ, del Zoppo G, Jacobson S, et al. Glibenclamide in cerebral ischemia and stroke. Neurocrit Care. 2014;20:319–33. https://doi.org/10.1007/s12028-013-9923-1.

    Article  CAS  Google Scholar 

  34. Sheth KN, Elm JJ, Molyneaux BJ, et al. Safety and efficacy of intravenous glyburide on brain swelling after large hemispheric infarction (GAMES-RP): a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Neurol. 2016;15:1160–9. https://doi.org/10.1016/S1474-4422(16)30196-X.

    Article  PubMed  CAS  Google Scholar 

  35. Kimberly WT, Bevers MB, von Kummer R, Demchuk AM, Romero JM, Elm JJ, et al. Effect of IV glyburide on adjudicated edema endpoints in the GAMES-RP Trial. Neurology. 2018;91:e2163–9. https://doi.org/10.1212/WNL.0000000000006618 This study analyzed the GAMES-RP trial results to show that IV glyburide administration within 10 h of symptoms onset in anterior circulation strokes with large infarct volumes showed benefit in reducing the rate of cerebral edema-related deaths.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sheth KN, Petersen NH, Cheung K, Elm JJ, Hinson HE, Molyneaux BJ, et al. Long-term outcomes in patients aged </=70 years with intravenous glyburide from the phase II GAMES-RP study of large hemispheric infarction: an exploratory analysis. Stroke. 2018;49:1457–63. https://doi.org/10.1161/STROKEAHA.117.020365.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Galicich JH, French LA, Melby JC. Use of dexamethasone in treatment of cerebral edema associated with brain tumors. J Lancet. 1961;81:46–53.

    PubMed  CAS  Google Scholar 

  38. Kaal EC, Vecht CJ. The management of brain edema in brain tumors. Curr Opin Oncol. 2004;16:593–600.

    Article  CAS  PubMed  Google Scholar 

  39. Ly KI, Wen PY. Clinical relevance of steroid use in neuro-oncology. Curr Neurol Neurosci Rep. 2017;17:5. https://doi.org/10.1007/s11910-017-0713-6.

    Article  PubMed  CAS  Google Scholar 

  40. Roth P, Happold C, Weller M. Corticosteroid use in neuro-oncology: an update. Neurooncol Pract. 2015;2:6–12. https://doi.org/10.1093/nop/npu029.

    Article  PubMed  Google Scholar 

  41. Roberts I, Yates D, Sandercock P, Farrell B, Wasserberg J, Lomas G, et al. Effect of intravenous corticosteroids on death within 14 days in 10008 adults with clinically significant head injury (MRC CRASH trial): randomised placebo-controlled trial. Lancet. 2004;364:1321–8. https://doi.org/10.1016/S0140-6736(04)17188-2.

  42. Edwards P, Arango M, Balica L, Cottingham R, el-Sayed H, Farrell B, et al. Final results of MRC CRASH, a randomised placebo-controlled trial of intravenous corticosteroid in adults with head injury-outcomes at 6 months. Lancet. 2005;365:1957–9. https://doi.org/10.1016/S0140-6736(05)66552-X.

  43. Clifton GL, Valadka A, Zygun D, Coffey CS, Drever P, Fourwinds S, et al. Very early hypothermia induction in patients with severe brain injury (the National Acute Brain Injury Study: Hypothermia II): a randomised trial. Lancet Neurol. 2011;10:131–9. https://doi.org/10.1016/S1474-4422(10)70300-8.

    Article  PubMed  Google Scholar 

  44. •• Cooper DJ, Nichol AD, Bailey M, Bernard S, Cameron PA, Pili-Floury S, et al. Effect of early sustained prophylactic hypothermia on neurologic outcomes among patients with severe traumatic brain injury: the POLAR randomized clinical trial. JAMA. 2018;320:2211–20. https://doi.org/10.1001/jama.2018.17075 The POLAR study was a randomized controlled trial that tested the efficacy of prophylactic hypothermia in the setting of TBI; the study showed that there was no significant difference in favorable outcome rates at 6 months when comparing patients that underwent normothermia protocol versus patients that underwent prophylactic hypothermia.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Andrews PJ, Sinclair HL, Rodriguez A, Harris BA, Battison CG, Rhodes JK, et al. Hypothermia for intracranial hypertension after traumatic brain injury. N Engl J Med. 2015;373:2403–12. https://doi.org/10.1056/NEJMoa1507581.

    Article  CAS  Google Scholar 

  46. Hutchinson PJ, Kolias AG, Timofeev IS, Corteen EA, Czosnyka M, Timothy J, et al. Trial of decompressive craniectomy for traumatic intracranial hypertension. N Engl J Med. 2016;375:1119–30. https://doi.org/10.1056/NEJMoa1605215.

    Article  Google Scholar 

  47. Cooper DJ, Rosenfeld JV, Murray L, et al. Decompressive craniectomy in diffuse traumatic brain injury. N Engl J Med. 2011;364:1493–502. https://doi.org/10.1056/NEJMoa1102077.

    Article  PubMed  CAS  Google Scholar 

  48. Shutter LA, Timmons SD. Intracranial pressure rescued by decompressive surgery after traumatic brain injury. N Engl J Med. 2016;375:1183–4. https://doi.org/10.1056/NEJMe1609722.

    Article  PubMed  Google Scholar 

  49. • Ziai WC, Thompson CB, Mayo S, McBee N, Freeman WD, Dlugash R, et al. Intracranial hypertension and cerebral perfusion pressure insults in adult hypertensive intraventricular hemorrhage: occurrence and associations with outcome. Crit Care Med. 2019;47:1125–34. https://doi.org/10.1097/CCM.0000000000003848 This study utilized CLEAR III trial data to show ICP values as low as 18 mmHg can be associated with worsened mortality in older patients and that age may affect ICP thresholds. It also highlighted the relationship between ICP and CPP, calling for investigation in merging the two parameters in management protocols.

    Article  PubMed  Google Scholar 

  50. Hanley DF, Lane K, McBee N, Ziai W, Tuhrim S, Lees KR, et al. Thrombolytic removal of intraventricular haemorrhage in treatment of severe stroke: results of the randomised, multicentre, multiregion, placebo-controlled CLEAR III trial. Lancet. 2017;389:603–11. https://doi.org/10.1016/S0140-6736(16)32410-2.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron S. Lord.

Ethics declarations

Conflict of Interest

Abhinav R. Changa, Barry M. Czeisler, and Aaron Sylvan Lord each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection on Critical Care

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Changa, A.R., Czeisler, B.M. & Lord, A.S. Management of Elevated Intracranial Pressure: a Review. Curr Neurol Neurosci Rep 19, 99 (2019). https://doi.org/10.1007/s11910-019-1010-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-019-1010-3

Keywords

Navigation