Skip to main content

Advertisement

Log in

Neurogenic Stunned Myocardium in Severe Neurological Injury

  • Critical Care (Stephan A. Mayer, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Neurogenic stunned myocardium (NSM) is a poorly recognized cardiac manifestation of neurological illness. This review addresses the contemporary understanding of NSM pathophysiology, epidemiology, diagnosis, and clinical management.

Recent Findings

While the precise pathophysiology and diagnosis remain unclear, NSM is phenotypically atypical stress cardiomyopathy that can be partially attributed to excess catecholaminergic toxicity. NSM is a diagnosis of exclusion where electrocardiography, echocardiography, and cardiac biomarkers are frequently abnormal. Clinical expertise is crucial to evaluate and differentiate NSM from acute coronary syndrome and in the evaluation of potential cardiac transplantation donors after unsalvageable severe neurological injury.

Summary

Neurogenic stunned myocardium is a relatively common and clinically impactful condition. More research is needed, particularly to refine clinical prognostication of NSM and rule out intrinsic cardiac injury in order to optimize donor candidacy in the event of brain death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Kerro A, Woods T, Chang JJ. Neurogenic stunned myocardium in subarachnoid hemorrhage. J Crit Care. 2017;38:27–34.

    PubMed  Google Scholar 

  2. Krishnamoorthy V, Wilson T, Sharma D, Vavilala MS. Prolonged cardiac dysfunction after intraparenchymal hemorrhage and neurogenic stunned myocardium. A A Case Rep. 2016;6:3–5.

    PubMed  PubMed Central  Google Scholar 

  3. Cheah CF, Kofler M, Schiefecker AJ, Beer R, Klug G, Pfausler B, et al. Takotsubo cardiomyopathy in traumatic brain injury. Neurocrit Care. 2017;26:284–91.

    PubMed  Google Scholar 

  4. Murthy SB, Shah S, Venkatasubba Rao CP, Suarez JI, Bershad EM. Clinical characteristics of myocardial stunning in acute stroke. J Clin Neurosci. 2014;21:1279–82.

    PubMed  Google Scholar 

  5. Al-Najafi S, Rosman H. Seizure-induced myocardial stunning: a possible cardiac link to sudden unexpected death in epilepsy (SUDEP). Seizure. 2015;24:137–9.

    PubMed  Google Scholar 

  6. Losonczy LI, Lovallo E, Schnorr CD, Mantuani D, et al. Am J Emerg Med. 2016;34:119.e3–4.

    Google Scholar 

  7. Lopez Chiriboga AS, Yoon JW, Freeman WD, Odunukan OW, Cheshire WP Jr. Takotsubo cardiomyopathy in the setting of acute hydrocephalus secondary to neurocysticercosis. Clin Auton Res. 2016;26:235–41.

    CAS  PubMed  Google Scholar 

  8. Lin W-S, Sung Y-F. Neurogenic stunned myocardium as a manifestation of encephalitis involving cerebellar tonsils. Am J Emerg Med. 2012;2083(30):e1–2.

    Google Scholar 

  9. Beauchamp GA, McMullan JT, Bonomo JB. Neurogenic stunned myocardium associated with acute spinal cord infarction: a case report. Case Rep Crit Care. 2012;2012:439528.

    PubMed  PubMed Central  Google Scholar 

  10. Moriya S, Inamasu J, Oheda M, Hirose Y. Neurogenic stunned myocardium associated with pediatric brain tumor may not be catecholamine-induced. Ann Pediatr Cardiol. 2015;8:240.

    PubMed  PubMed Central  Google Scholar 

  11. Messina AG, Paranicas M, Katz B, Markowitz J, Yao FS, Devereux RB. Effect of electroconvulsive therapy on the electrocardiogram and echocardiogram. Anesth Analg. 1992;75:511–4.

    CAS  PubMed  Google Scholar 

  12. Magid-Bernstein J, Al-Mufti F, Merkler AE, Roh D, Patel S, May TL, et al. Unexpected rapid improvement and neurogenic stunned myocardium in a patient with acute motor axonal neuropathy. J Clin Neuromuscul Dis. 2016;17:135–41.

    PubMed  Google Scholar 

  13. Cushing H. Concerning a definite regulatory mechanism of the vaso-motor centre which controls blood pressure during cerebral compression. 1901.

    Google Scholar 

  14. Fodstad H, Kelly PJ, Buchfelder M. History of the cushing reflex. Neurosurgery. 2006;59:1132–7 discussion 1137.

    PubMed  Google Scholar 

  15. Braunwald E, Kloner RA. The stunned myocardium: prolonged, postischemic ventricular dysfunction. Circulation. 1982;66:1146–9.

    CAS  PubMed  Google Scholar 

  16. •• de Chazal HM, de Chazal HM, Del Buono MG, Keyser-Marcus L, Ma L, Gerard Moeller F, et al. Stress cardiomyopathy diagnosis and treatment. J Am Coll Cardiol. 2018;72:1955–71 This paper provides a contemporary review of stress cardiomyopathy and proposed pathophysiologic mechanisms for neurocardiogenic myocardial stunning from emotional and physical triggers.

    PubMed Central  Google Scholar 

  17. Wittstein IS, Thiemann DR, Lima JAC, Baughman KL, Schulman SP, Gerstenblith G, et al. Neurohumoral features of myocardial stunning due to sudden emotional stress. N Engl J Med. 2005;352:539–48.

    CAS  PubMed  Google Scholar 

  18. Ancona F, Bertoldi LF, Ruggieri F, Cerri M, Magnoni M, Beretta L, et al. Takotsubo cardiomyopathy and neurogenic stunned myocardium: similar albeit different. Eur Heart J. 2016;37:2830–2.

    PubMed  Google Scholar 

  19. Kolin A, Norris JW. Myocardial damage from acute cerebral lesions. Stroke. 1984;15:990–3.

    CAS  PubMed  Google Scholar 

  20. Guglin M, Omar HR, Ray G, Wright C. Prevalence, determinants, and correlates of coagulation necrosis and contraction band necrosis in donor hearts. Clin Transpl. 2019;33:e13472.

    Google Scholar 

  21. Inamasu J, Watanabe E, Okuda K, Kumai T, Sugimoto K, Ozaki Y, et al. Are there differences between Takotsubo cardiomyopathy and neurogenic stunned myocardium? A prospective observational study. Int J Cardiol. 2014;177:1108–10.

    PubMed  Google Scholar 

  22. Bybee KA, Prasad A. Stress-related cardiomyopathy syndromes. Circulation. 2008;118:397–409.

    PubMed  Google Scholar 

  23. Krishnamoorthy V, Mackensen GB, Gibbons EF, Vavilala MS. Cardiac dysfunction after neurologic injury: what do we know and where are we going? Chest. 2016;149:1325–31.

    PubMed  Google Scholar 

  24. Pelliccia F, Kaski JC, Crea F, Camici PG. Pathophysiology of Takotsubo syndrome. Circulation. 2017;135:2426–41.

    CAS  PubMed  Google Scholar 

  25. Angelini P. Transient left ventricular apical ballooning: a unifying pathophysiologic theory at the edge of Prinzmetal angina. Catheter Cardiovasc Interv. 2008;71:342–52.

    PubMed  Google Scholar 

  26. Yuki K, Kodama Y, Onda J, Emoto K, Morimoto T, Uozumi T. Coronary vasospasm following subarachnoid hemorrhage as a cause of stunned myocardium. Case report. J Neurosurg. 1991;75:308–11.

    CAS  PubMed  Google Scholar 

  27. Galiuto L, De Caterina AR, Porfidia A, Paraggio L, Barchetta S, Locorotondo G, et al. Reversible coronary microvascular dysfunction: a common pathogenetic mechanism in apical ballooning or Tako-Tsubo syndrome. Eur Heart J. 2010;31:1319–27.

    PubMed  Google Scholar 

  28. Naegele M, Flammer AJ, Enseleit F, Roas S, Frank M, Hirt A, et al. Endothelial function and sympathetic nervous system activity in patients with Takotsubo syndrome. Int J Cardiol. 2016;224:226–30.

    CAS  PubMed  Google Scholar 

  29. Heusch G, Baumgart D, Camici P, Chilian W, Gregorini L, Hess O, et al. Alpha-adrenergic coronary vasoconstriction and myocardial ischemia in humans. Circulation. 2000;101:689–94.

    CAS  PubMed  Google Scholar 

  30. Natelson BH, Suarez RV, Terrence CF, Turizo R. Patients with epilepsy who die suddenly have cardiac disease. Arch Neurol. 1998;55:857–60.

    CAS  PubMed  Google Scholar 

  31. Van Bogaert A, Van Bogaert PP, Boddin M, Dierick W, Wellens D, De Wilde A. Vascular and noradrenalic reactions in the musculocutaneous bed during hypothalamic stimulation. Arch Int Physiol Biochim. 1975;83:309–23.

    PubMed  Google Scholar 

  32. Banki NM, Kopelnik A, Dae MW, Miss J, Tung P, Lawton MT, et al. Acute neurocardiogenic injury after subarachnoid hemorrhage. Circulation. 2005;112:3314–9.

    PubMed  Google Scholar 

  33. Novitzky D, Wicomb WN, Cooper DK, Rose AG, Reichart B. Prevention of myocardial injury during brain death by total cardiac sympathectomy in the Chacma baboon. Ann Thorac Surg. 1986;41:520–4.

    CAS  PubMed  Google Scholar 

  34. Van Vliet PD, Burchell HB, Titus JL. Focal myocarditis associated with pheochromocytoma. N Engl J Med. 1966;274:1102–8.

    PubMed  Google Scholar 

  35. Mann DL, Kent RL, Parsons B, Cooper G. Adrenergic effects on the biology of the adult mammalian cardiocyte. Circulation. 1992;85:790–804.

    CAS  PubMed  Google Scholar 

  36. Ferreira VM, Marcelino M, Piechnik SK, Marini C, Karamitsos TD, Ntusi NAB, et al. Pheochromocytoma is characterized by catecholamine-mediated myocarditis, focal and diffuse myocardial fibrosis, and myocardial dysfunction. J Am Coll Cardiol. 2016;67:2364–74.

    CAS  PubMed  Google Scholar 

  37. Zaroff JG, Pawlikowska L, Miss JC, Yarlagadda S, Ha C, Achrol A, et al. Adrenoceptor polymorphisms and the risk of cardiac injury and dysfunction after subarachnoid hemorrhage. Stroke. 2006;37:1680–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Shao Y, Redfors B, Ståhlman M, Täng MS, Miljanovic A, Möllmann H, et al. A mouse model reveals an important role for catecholamine-induced lipotoxicity in the pathogenesis of stress-induced cardiomyopathy. Eur J Heart Fail. 2013;15:9–22.

    CAS  PubMed  Google Scholar 

  39. Beesley SJ, Weber G, Sarge T, Nikravan S, Grissom CK, Lanspa MJ, et al. Septic cardiomyopathy. Crit Care Med. 2018;46:625–34.

    PubMed  Google Scholar 

  40. Chaikittisilpa N, Krishnamoorthy V, Lele AV, Qiu Q, Vavilala MS. Characterizing the relationship between systemic inflammatory response syndrome and early cardiac dysfunction in traumatic brain injury. J Neurosci Res. 2018;96:661–70.

    CAS  PubMed  Google Scholar 

  41. Szabó G, Hackert T, Sebening C, Vahl CF, Hagl S. Modulation of coronary perfusion pressure can reverse cardiac dysfunction after brain death. Ann Thorac Surg. 1999;67:18–25 discussion 25–6.

    PubMed  Google Scholar 

  42. Ranasinghe AM, Bonser RS. Endocrine changes in brain death and transplantation. Best Pract Res Clin Endocrinol Metab. 2011;25:799–812.

    CAS  PubMed  Google Scholar 

  43. Templin C, Hänggi J, Klein C, Topka MS, Hiestand T, Levinson RA, et al. Altered limbic and autonomic processing supports brain-heart axis in Takotsubo syndrome. Eur Heart J. 2019;40:1183–7.

    PubMed  PubMed Central  Google Scholar 

  44. Dujardin KS, McCully RB, Wijdicks EF, Tazelaar HD, Seward JB, McGregor CG, et al. Myocardial dysfunction associated with brain death: clinical, echocardiographic, and pathologic features. J Heart Lung Transplant. 2001;20:350–7.

    CAS  PubMed  Google Scholar 

  45. Banki N, Kopelnik A, Tung P, Lawton MT, Gress D, Drew B, et al. Prospective analysis of prevalence, distribution, and rate of recovery of left ventricular systolic dysfunction in patients with subarachnoid hemorrhage. J Neurosurg. 2006;105:15–20.

    PubMed  Google Scholar 

  46. Prathep S, Sharma D, Hallman M, Joffe A, Krishnamoorthy V, Mackensen GB, et al. Preliminary report on cardiac dysfunction after isolated traumatic brain injury. Crit Care Med. 2014;42:142–7.

    PubMed  Google Scholar 

  47. Yoshimura S, Toyoda K, Ohara T, Nagasawa H, Ohtani N, Kuwashiro T, et al. Takotsubo cardiomyopathy in acute ischemic stroke. Ann Neurol. 2008;64:547–54.

    PubMed  Google Scholar 

  48. • Krishnamoorthy V, Rowhani-Rahbar A, Gibbons EF, Rivara FP, Temkin NR, Pontius C, et al. Early systolic dysfunction following traumatic brain injury: a cohort study. Crit Care Med. 2017;45:1028–36 This prospective cohort study assessed cardiac function with screening transthoracic echocardiograms after traumatic brain injury. Incident early systolic dysfunction occurred only in patients with at least moderate severity brain injury and resolved within 1 week.

    PubMed  PubMed Central  Google Scholar 

  49. Kothavale A, Banki NM, Kopelnik A, Yarlagadda S, Lawton MT, Ko N, et al. Predictors of left ventricular regional wall motion abnormalities after subarachnoid hemorrhage. Neurocrit Care. 2006;4:199–205.

    PubMed  Google Scholar 

  50. Kilbourn KJ, Levy S, Staff I, Kureshi I, McCullough L. Clinical characteristics and outcomes of neurogenic stress cardiomyopathy in aneurysmal subarachnoid hemorrhage. Clin Neurol Neurosurg. 2013;115:909–14.

    PubMed  Google Scholar 

  51. Malik AN, Gross BA, Rosalind Lai PM, Moses ZB, Du R. Neurogenic stress cardiomyopathy after aneurysmal subarachnoid hemorrhage. World Neurosurg. 2015;83:880–5.

    PubMed  PubMed Central  Google Scholar 

  52. Chen Z, Venkat P, Seyfried D, Chopp M, Yan T, Chen J. Brain-heart interaction: cardiac complications after stroke. Circ Res. 2017;121:451–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Thygesen K, Alpert JS, Jaffe AS, Chaitman BR, Bax JJ, Morrow DA, et al. Fourth universal definition of myocardial infarction (2018). Circulation. 2018;138:e618–51.

    PubMed  Google Scholar 

  54. Jangra K, Grover VK, Bhagat H, Bhardwaj A, Tewari MK, Kumar B, et al. Evaluation of the effect of aneurysmal clipping on electrocardiography and echocardiographic changes in patients with subarachnoid hemorrhage: a prospective observational study. J Neurosurg Anesthesiol. 2017;29:335–40.

    PubMed  Google Scholar 

  55. Bulsara KR, McGirt MJ, Liao L, Villavicencio AT, Borel C, Alexander MJ, et al. Use of the peak troponin value to differentiate myocardial infarction from reversible neurogenic left ventricular dysfunction associated with aneurysmal subarachnoid hemorrhage. J Neurosurg. 2003;98:524–8.

    PubMed  Google Scholar 

  56. Parekh N, Venkatesh B, Cross D, Leditschke A, Atherton J, Miles W, et al. Cardiac troponin I predicts myocardial dysfunction in aneurysmal subarachnoid hemorrhage. J Am Coll Cardiol. 2000;36:1328–35.

    CAS  PubMed  Google Scholar 

  57. Cheng C-Y, Hsu C-Y, Wang T-C, Jeng Y-C, Yang W-H. Evaluation of cardiac complications following hemorrhagic stroke using 5-year centers for disease control and prevention (CDC) database. J Clin Med Res. 2018;7. https://doi.org/10.3390/jcm7120519.

    PubMed Central  Google Scholar 

  58. Yu Z, Fan B, Wu H, Wang X, Li C, Xu R, et al. Multiple systemic embolism in infective endocarditis underlying in Barlow’s disease. BMC Infect Dis. 2016;16:403. https://doi.org/10.1186/s12879-016-1726-5.

    Article  PubMed  PubMed Central  Google Scholar 

  59. • Ghadri JR, Wittstein IS, Prasad A, Sharkey S, Dote K, Akashi YJ, et al. International expert consensus document on Takotsubo syndrome (part I): clinical characteristics, diagnostic criteria, and pathophysiology. Eur Heart J. 2018;39:2032–46 This clinical expert consensus document updated diagnostic criteria for stress cardiomyopathy and included acute neurological disorders as a predisposing trigger.

    PubMed  PubMed Central  Google Scholar 

  60. Ghadri JR, Cammann VL, Jurisic S, Seifert B, Napp LC, Diekmann J, et al. A novel clinical score (InterTAK Diagnostic Score) to differentiate takotsubo syndrome from acute coronary syndrome: results from the International Takotsubo Registry. Eur J Heart Fail. 2017;19:1036–42.

    PubMed  Google Scholar 

  61. Burch GE, Meyers R, Abildskov JA. A new electrocardiographic pattern observed in cerebrovascular accidents. Circulation. 1954;9:719–23.

    CAS  PubMed  Google Scholar 

  62. de Zwaan C, Bär FW, Wellens HJ. Characteristic electrocardiographic pattern indicating a critical stenosis high in left anterior descending coronary artery in patients admitted because of impending myocardial infarction. Am Heart J. 1982;103:730–6.

    PubMed  Google Scholar 

  63. Chen W-L, Huang C-H, Chen J-H, Tai HC-H, Chang S-H, Wang Y-C. ECG abnormalities predict neurogenic pulmonary edema in patients with subarachnoid hemorrhage. Am J Emerg Med. 2016;34:79–82.

    PubMed  Google Scholar 

  64. Khechinashvili G, Asplund K. Electrocardiographic changes in patients with acute stroke: a systematic review. Cerebrovasc Dis. 2002;14:67–76.

    PubMed  Google Scholar 

  65. Zaroff JG, Rordorf GA, Ogilvy CS, Picard MH. Regional patterns of left ventricular systolic dysfunction after subarachnoid hemorrhage: evidence for neurally mediated cardiac injury. J Am Soc Echocardiogr. 2000;13:774–9.

    CAS  PubMed  Google Scholar 

  66. Citro R, Lyon AR, Meimoun P, Omerovic E, Redfors B, Buck T, et al. Standard and advanced echocardiography in takotsubo (stress) cardiomyopathy: clinical and prognostic implications. J Am Soc Echocardiogr. 2015;28:57–74.

    PubMed  Google Scholar 

  67. Kono T, Morita H, Kuroiwa T, Onaka H, Takatsuka H, Fujiwara A. Left ventricular wall motion abnormalities in patients with subarachnoid hemorrhage: neurogenic stunned myocardium. J Am Coll Cardiol. 1994;24:636–40.

    CAS  PubMed  Google Scholar 

  68. Abd TT, Hayek S, Cheng J-W, Samuels OB, Wittstein IS, Lerakis S. Incidence and clinical characteristics of takotsubo cardiomyopathy post-aneurysmal subarachnoid hemorrhage. Int J Cardiol. 2014;176:1362–4.

    PubMed  Google Scholar 

  69. Cinotti R, Piriou N, Launey Y, Le Tourneau T, Lamer M, Delater A, et al. Speckle tracking analysis allows sensitive detection of stress cardiomyopathy in severe aneurysmal subarachnoid hemorrhage patients. Intensive Care Med. 2016;42:173–82.

    PubMed  Google Scholar 

  70. Cai L, Addetia K, Medvedofsky D, Spencer KT. Myocardial strain may be useful in differentiating Takotsubo cardiomyopathy from left anterior descending coronary artery ischemia. Int J Cardiol. 2017;230:359–63.

    PubMed  Google Scholar 

  71. • Kagiyama N, Sugahara M, Crago EA, Qi Z, Lagattuta TF, Yousef KM, et al. Neurocardiac injury assessed by strain imaging is associated with in-hospital mortality in patients with subarachnoid hemorrhage. JACC Cardiovasc Imaging. 2019. https://doi.org/10.1016/j.jcmg.2019.02.023 This prospective cohort study assessed speckle tracking strain echocardiography after acute subarachnoid hemorrhage. Left ventricular global longitudinal strain and right ventricular strain abnormalities associated with in-hospital mortality after SAH.

  72. Asch FM, Medvedofsky D. Myocardial strain, subarachnoid hemorrhage, and the expanding spectrum of stress-induced cardiomyopathy. JACC Cardiovasc Imaging. 2019. https://doi.org/10.1016/j.jcmg.2019.03.014.

  73. Liesirova K, Abela E, Pilgrim T, Bickel L, Meinel T, Meisterernst J, et al. Baseline troponin T level in stroke and its association with stress cardiomyopathy. PLoS One. 2018;13:e0209764.

    PubMed  PubMed Central  Google Scholar 

  74. Bustamante A, Díaz-Fernández B, Pagola J, Blanco-Grau A, Rubiera M, Penalba A, et al. Admission troponin-I predicts subsequent cardiac complications and mortality in acute stroke patients. Eur Stroke J. 2016;1:205–12.

    PubMed  PubMed Central  Google Scholar 

  75. Salim A, Hadjizacharia P, Brown C, Inaba K, Teixeira PGR, Chan L, et al. Significance of troponin elevation after severe traumatic brain injury. J Trauma. 2008;64:46–52.

    CAS  PubMed  Google Scholar 

  76. El-Menyar A, Sathian B, Wahlen BM, Al-Thani H. Serum cardiac troponins as prognostic markers in patients with traumatic and non-traumatic brain injuries: a meta-analysis. Am J Emerg Med. 2019;37:133–42.

    PubMed  Google Scholar 

  77. van der Bilt IA, Hasan D, van den Brink RB, Cramer MJ, van der Jagt M, van Kooten F, et al. Time course and risk factors for myocardial dysfunction after aneurysmal subarachnoid hemorrhage. Neurosurgery. 2015;76:700–5 discussion 705–6.

    PubMed  Google Scholar 

  78. Tung P, Kopelnik A, Banki N, Ong K, Ko N, Lawton MT, et al. Predictors of neurocardiogenic injury after subarachnoid hemorrhage. Stroke. 2004;35:548–51.

    PubMed  Google Scholar 

  79. Duello KM, Nagel JP, Thomas CS, Blackshear JL, Freeman WD. Relationship of troponin T and age- and sex-adjusted BNP elevation following subarachnoid hemorrhage with 30-day mortality. Neurocrit Care. 2015;23:59–65.

    CAS  PubMed  Google Scholar 

  80. Amsterdam EA, Wenger NK, Brindis RG, Casey DE Jr, Ganiats TG, Holmes DR Jr, et al. 2014 AHA/ACC guideline for the management of patients with non-ST-elevation acute coronary syndromes: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014;64:e139–228.

    PubMed  Google Scholar 

  81. SCOT-HEART Investigators, Newby DE, Adamson PD, Berry C, Boon NA, Dweck MR, et al. Coronary CT angiography and 5-year risk of myocardial infarction. N Engl J Med. 2018;379:924–33.

    Google Scholar 

  82. Luo H, Song W-X, Jiang J-W, Zhao J-L, Rong W-L, Li M-H. Effects of preadmission beta-blockers on neurogenic stunned myocardium after aneurysmal subarachnoid hemorrhage: a meta- analysis. Clin Neurol Neurosurg. 2017;158:77–81.

    PubMed  Google Scholar 

  83. Neil-Dwyer G, Walter P, Cruickshank JM, Doshi B, O’Gorman P. Effect of propranolol and phentolamine on myocardial necrosis after subarachnoid haemorrhage. Br Med J. 1978;2:990–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Colvin MM, et al. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines and the Heart Failure Society of America. J Card Fail. 2017;23:628–51.

    PubMed  Google Scholar 

  85. St-Onge M, Anseeuw K, Cantrell FL, Gilchrist IC, Hantson P, Bailey B, et al. Experts consensus recommendations for the management of calcium channel blocker poisoning in adults. Crit Care Med. 2017;45:e306–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Vanderschuren A, Hantson P. Hyperinsulinemic euglycemia therapy for stunned myocardium following subarachnoid hemorrhage. J Neurosurg. 2009;110:64–6.

    PubMed  Google Scholar 

  87. Chandler BT, Pernu P. Hyperinsulinaemic euglycaemic therapy use in neurogenic stunned myocardium following subarachnoid haemorrhage. Anaesth Intensive Care. 2018;46:575–8.

    CAS  PubMed  Google Scholar 

  88. Frontera JA, Parra A, Shimbo D, Fernandez A, Schmidt JM, Peter P, et al. Cardiac arrhythmias after subarachnoid hemorrhage: risk factors and impact on outcome. Cerebrovasc Dis. 2008;26:71–8.

    PubMed  PubMed Central  Google Scholar 

  89. Taggart P, Critchley H, Lambiase PD. Heart-brain interactions in cardiac arrhythmia. Heart. 2011;97:698–708.

    CAS  PubMed  Google Scholar 

  90. Taccone FS, Lubicz B, Piagnerelli M, Van Nuffelen M, Vincent J-L, De Backer D. Cardiogenic shock with stunned myocardium during triple-H therapy treated with intra-aortic balloon pump counterpulsation. Neurocrit Care. 2009;10:76–82.

    PubMed  Google Scholar 

  91. Lazaridis C, Pradilla G, Nyquist PA, Tamargo RJ. Intra-aortic balloon pump counterpulsation in the setting of subarachnoid hemorrhage, cerebral vasospasm, and neurogenic stress cardiomyopathy. Case report and review of the literature. Neurocrit Care. 2010;13:101–8.

    PubMed  Google Scholar 

  92. Levy ML, Rabb CH, Zelman V, Giannotta SL. Cardiac performance enhancement from dobutamine in patients refractory to hypervolemic therapy for cerebral vasospasm. J Neurosurg. 1993;79:494–9.

    CAS  PubMed  Google Scholar 

  93. Naidech A, Du Y, Kreiter KT, Parra A, Fitzsimmons B-F, Lavine SD, et al. Dobutamine versus milrinone after subarachnoid hemorrhage. Neurosurgery. 2005;56:21–6l discussion 26–7.

    PubMed  Google Scholar 

  94. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Drazner MH, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013;62:e147–239.

    PubMed  Google Scholar 

  95. Ghadri JR, Kato K, Cammann VL, Gili S, Jurisic S, Di Vece D, et al. Long-term prognosis of patients with Takotsubo syndrome. J Am Coll Cardiol. 2018;72:874–82.

    PubMed  Google Scholar 

  96. Pelliccia F, Pasceri V, Patti G, Tanzilli G, Speciale G, Gaudio C, et al. Long-term prognosis and outcome predictors in Takotsubo syndrome: a systematic review and meta-regression study. JACC Heart Fail. 2019;7:143–54.

    PubMed  Google Scholar 

  97. van der Bilt I, Hasan D, van den Brink R, Cramer M-J, van der Jagt M, van Kooten F, et al. Cardiac dysfunction after aneurysmal subarachnoid hemorrhage: relationship with outcome. Neurology. 2014;82:351–8.

    PubMed  Google Scholar 

  98. Mohamedali B, Bhat G, Tatooles A, Zelinger A. Neurogenic stress cardiomyopathy in heart donors. J Card Fail. 2014;20:207–11.

    PubMed  Google Scholar 

  99. Mohamedali B, Bhat G, Zelinger A. Frequency and pattern of left ventricular dysfunction in potential heart donors: implications regarding use of dysfunctional hearts for successful transplantation. J Am Coll Cardiol. 2012;60:235–6.

    PubMed  Google Scholar 

  100. • Madan S, Saeed O, Vlismas P, Katsa I, Patel SR, Shin JJ, et al. Outcomes after transplantation of donor hearts with improving left ventricular systolic dysfunction. J Am Coll Cardiol. 2017;70:1248–58 This study identified donor hearts in the United Network of Organ Sharing database with transient pre-transplant left ventricular systolic dysfunction and found comparable post-transplant clinical outcomes to transplanted hearts from donors with normal ventricular function.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason J. Chang.

Ethics declarations

Conflict of Interest

Benjamin B. Kenigsberg, Christopher F. Barnett, Jeffrey C. Mai, and Jason J. Chang each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Clinical Vignette

A 40-year-old previously healthy man, with a prior echocardiogram showing normal left ventricle (LV) size and left ventricular ejection fraction (LVEF) 65%, mild aortic regurgitation, and aortic root dilatation, is admitted with a Hunt Hess 2/Fisher Grade 4 subarachnoid hemorrhage. An external ventricular drain is emergently placed for hydrocephalus. Conventional angiography reveals a ruptured right posterior communicating artery aneurysm that is coiled. The patient is started on nimodipine and seizure prophylaxis. Transcranial dopplers and clinical exam are performed to monitor for cerebral vasospasm.

On hospital day 5, a chest radiograph (CXR) ordered for dyspnea shows prominent cardiomegaly and mild pulmonary edema. A subsequent echocardiogram identifies a severely dilated LV with severe global hypokinesis, a LVEF 20–25%, and moderate aortic regurgitation and aortic root dilatation.

Medical therapy with a beta-blocker, angiotensin receptor blocker, and diuretics are administered with a resolution of clinical heart failure symptoms. During his month-long hospitalization, no cerebral vasospasm or new adverse events occur. He is discharged home with ongoing outpatient physical therapy. Repeat echocardiogram after six weeks shows normalization of LV function with a LVEF of 55–60% along with moderate aortic regurgitation.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Critical Care

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kenigsberg, B.B., Barnett, C.F., Mai, J.C. et al. Neurogenic Stunned Myocardium in Severe Neurological Injury. Curr Neurol Neurosci Rep 19, 90 (2019). https://doi.org/10.1007/s11910-019-0999-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-019-0999-7

Keywords

Navigation