Skip to main content

Advertisement

Log in

Novel Cardiac Intracrine Mechanisms Based on Ang-(1-12)/Chymase Axis Require a Revision of Therapeutic Approaches in Human Heart Disease

  • Hypertension and the Kidney (RM Carey, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Purpose of the Review

Drugs targeting the renin-angiotensin system (RAS), namely angiotensin-converting enzyme (ACE) inhibitors and angiotensin receptor blockers, are the most commonly prescribed drugs for patients with or at risk for cardiovascular events. However, new treatment strategies aimed at mitigating the rise of the heart failure pandemic are warranted because clinical trials show that RAS blockers have limited benefits in halting disease progression. The main goal of this review is to put forward the concept of an intracrine RAS signaling through the novel angiotensin-(1-12)/chymase axis as the main source of deleterious angiotensin II (Ang II) in cardiac maladaptive remodeling leading to heart failure (HF).

Recent Findings

Expanding traditional knowledge, Ang II can be produced in tissues independently from the circulatory renin-angiotensin system. In the heart, angiotensin-(1-12) [Ang-(1-12)], a recently discovered derivative of angiotensinogen, is a precursor of Ang II, and chymase rather than ACE is the main enzyme contributing to the direct production of Ang II from Ang-(1-12). The Ang-(1-12)/chymase axis is an independent intracrine pathway accounting for the trophic, contractile, and pro-arrhythmic Ang II actions in the human heart. Ang-(1-12) expression and chymase activity have been found elevated in the left atrial appendage of heart disease subjects, suggesting a pivotal role of this axis in the progression of HF.

Summary

Recent meta-analysis of large clinical trials on the use of ACE inhibitors and angiotensin receptor blockers in cardiovascular disease has demonstrated an imbalance between patients that significantly benefit from these therapeutic agents and those that remain at risk for heart disease progression. Looking to find an explanation, detailed investigation on the RAS has unveiled a previously unrecognized complexity of substrates and enzymes in tissues ultimately associated with the production of Ang II that may explain the shortcomings of ACE inhibition and angiotensin receptor blockade. Discovery of the Ang-(1-12)/chymase axis in human hearts, capable of producing Ang II independently from the circulatory RAS, has led to the notion that a tissue-delimited RAS signaling in an intracrine fashion may account for the deleterious effects of Ang II in the heart, contributing to the transition from maladaptive cardiac remodeling to heart failure. Targeting intracellular RAS signaling may improve current therapies aimed at reducing the burden of heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

RAS:

Renin-angiotensin system

ACE:

Angiotensin-converting enzyme

ARB:

Angiotensin II receptor blocker

Ang:

Angiotensin

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Drazner MH. The progression of hypertensive heart disease. Circulation. 2011;123:327–34. doi:10.1161/CIRCULATIONAHA.108.845792.

    Article  PubMed  Google Scholar 

  2. Khatibzadeh S, Farzadfar F, Oliver J, Ezzati M, Moran A. Worldwide risk factors for heart failure: a systematic review and pooled analysis. Int J Cardiol. 2013;168:1186–94. doi:10.1016/j.ijcard.2012.11.065.

    Article  PubMed  Google Scholar 

  3. O'Donnell CJ, Elosua R. Cardiovascular risk factors. Insights from Framingham Heart Study. Rev Esp Cardiol. 2008;61:299–310. doi:10.1016/S1885-5857(08)60118-8.

    Article  PubMed  Google Scholar 

  4. Haider AW, Larson MG, Franklin SS, Levy D. Systolic blood pressure, diastolic blood pressure, and pulse pressure as predictors of risk for congestive heart failure in the Framingham Heart Study. Ann Intern Med. 2003;138:10–6. doi:10.7326/0003-4819-138-1-200301070-00006.

    Article  PubMed  Google Scholar 

  5. Global Health Risks: Mortality and burden of disease attributable to selected major risks. www.who.int/healthinfo/global_burden_disease/GlobalHealthRisks_report_full.pdf. Accessed 09–19-2016.

  6. Shimizu I, Minamino T. Physiological and pathological cardiac hypertrophy. J Mol Cell Cardiol. 2016;97:245–62. doi:10.1016/j.yjmcc.2016.06.001.

    Article  CAS  PubMed  Google Scholar 

  7. Drazner MH. The transition from hypertrophy to failure: how certain are we? Circulation. 2005;112:936–8. doi:10.1161/CIRCULATIONAHA.105.558734.

    Article  PubMed  Google Scholar 

  8. Kehat I, Molkentin JD. Molecular pathways underlying cardiac remodeling during pathophysiological stimulation. Circulation. 2010;122:2727–35. doi:10.1161/CIRCULATIONAHA.110.942268.

    Article  PubMed  Google Scholar 

  9. Jessup M, Brozena S. Heart failure. N Engl J Med. 2003;348:2007–18. doi:10.1056/NEJMra021498.

    Article  PubMed  Google Scholar 

  10. Xu Y, Sharma D, Li G, Liu Y. Atrial remodeling: new pathophysiological mechanism of atrial fibrillation. Med Hypotheses. 2013;80:53–6. doi:10.1016/j.mehy.2012.10.009.

    Article  PubMed  Google Scholar 

  11. Odutayo A, Wong CX, Hsiao AJ, Hopewell S, Altman DG, Emdin CA. Atrial fibrillation and risks of cardiovascular disease, renal disease, and death: systematic review and meta-analysis. Br Med J (Clin Res Ed). 2016;354:i4482. doi:10.1136/bmj.i4482.

    Google Scholar 

  12. Lyon RC, Zanella F, Omens JH, Sheikh F. Mechanotransduction in cardiac hypertrophy and failure. Circ Res. 2015;116:1462–76. doi:10.1161/CIRCRESAHA.116.304937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Francis GS, McDonald KM, Cohn JN. Neurohumoral activation in preclinical heart failure. Remodeling and the potential for intervention. Circulation. 1993;87:IV90–6.

    CAS  PubMed  Google Scholar 

  14. Usui S, Yao A, Hatano M, Kohmoto O, Takahashi T, Nagai R, et al. Upregulated neurohumoral factors are associated with left ventricular remodeling and poor prognosis in rats with monocrotaline-induced pulmonary arterial hypertension. Circ J. 2006;70:1208–15. doi:10.1253/circj.70.1208.

    Article  CAS  PubMed  Google Scholar 

  15. Hill JA, Olson EN. Cardiac plasticity. N Engl J Med. 2008;358:1370–80. doi:10.1056/NEJMra072139.

    Article  CAS  PubMed  Google Scholar 

  16. The CONSENSUS. Trial study group. Effects of enalapril on mortality in severe congestive heart failure. Results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). N Engl J Med. 1987;316:1429–35. doi:10.1056/NEJM198706043162301.

    Article  Google Scholar 

  17. Packer M. Love of angiotensin-converting enzyme inhibitors in the time of cholera. JACC Heart Fail. 2016;4:403–8. doi:10.1016/j.jchf.2016.02.012.

    Article  Google Scholar 

  18. •• Ferrario CM, Ahmad S, Varagic J, Cheng CP, Groban L, Wang H, et al. Intracrine Ang II functions originate from noncanonical pathways in the human heart. Am J Physiol Heart Circ Physiol. 2016;311:H404–14. doi:10.1152/ajpheart.00219.2016. This review summarizes the functional significance of Ang-(1-12) as a primary tissue-borne substrate of the pathological actions of Ang II

    Article  PubMed  Google Scholar 

  19. Baker WL, Coleman CI, Kluger J, Reinhart KM, Talati R, Quercia R, et al. Systematic review: comparative effectiveness of angiotensin-converting enzyme inhibitors or Ang II-receptor blockers for ischemic heart disease. Ann Intern Med. 2009;151:861–71. doi:10.7326/0003-4819-151-12-200912150-00162.

    Article  PubMed  Google Scholar 

  20. •• Brugts JJ, van Vark L, Akkerhuis M, Bertrand M, Fox K, Mourad JJ, et al. Impact of renin-angiotensin system inhibitors on mortality and major cardiovascular endpoints in hypertension: a number-needed-to-treat analysis. Int J Cardiol. 2015;181:425–9. doi:10.1016/j.ijcard.2014.11.179. In this study, the NNT metric is used to compare the impact of ACE inhibitors and ARBs on cardiovascular end points. Despite proven benefits, the number of patients needed to be treated to prevent one additional event remains large

    Article  PubMed  Google Scholar 

  21. • Dusing R. Mega clinical trials which have shaped the RAS intervention clinical practice. Ther Adv Cardiovasc Dis. 2016;10:133–50. doi:10.1177/1753944716644131. This important review analyzed the outcomes of all clinical trials involving >1000 patients employing ACE inhibitors and ARBs. The article provides a broader perspective on the current knowledge regarding these therapeutic strategies

    Article  PubMed  Google Scholar 

  22. Wright JTJ, Williamson JD, Whelton PK, Snyder JK, Sink KM, Rocco MV, et al. For the Sprint research group. A randomized trial of intensive versus standard blood-pressure control. N Engl J Med. 2015;373:2103–16. doi:10.1056/NEJMoa1511939.

    Article  CAS  PubMed  Google Scholar 

  23. Tigerstedt R, Bergman PQ. Niere und Kreislauf. Skand Arch Physiol. 1898;8:223–71. doi:10.1111/j.1748-1716.1898.tb00272.x.

    Article  Google Scholar 

  24. Marks LS, Maxwell MH. Tigerstedt and the discovery of renin. An historical note. Hypertension. 1979;1:384–8. doi:10.1161/01.hyp.1.4.384.

    Article  CAS  PubMed  Google Scholar 

  25. • Abadir PM, Walston JD, Carey RM. Subcellular characteristics of functional intracellular renin-angiotensin systems. Peptides. 2012;38:437–45. doi:10.1016/j.peptides.2012.09.016. This review focuses on the subcellular localization, distribution and functions of intracellular RAS components, with an emphasis of potential consequences of RAS activation in different organ systems

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chappell MC. Biochemical evaluation of the renin-angiotensin system: the good, bad, and absolute? Am J Physiol Heart Circ Physiol. 2016;310:H137–52. doi:10.1152/ajpheart.00618.2015.

    Article  PubMed  Google Scholar 

  27. Ferrario CM, Ahmad S, Joyner J, Varagic J. Advances in the renin angiotensin system focus on angiotensin-converting enzyme 2 and angiotensin-(1-7). Adv Pharmacol. 2010;59:197–233. doi:10.1016/S1054-3589(10)59007-0.

    Article  CAS  PubMed  Google Scholar 

  28. • Ferrario CM, Ahmad S, Nagata S, Simington SW, Varagic J, Kon N, et al. An evolving story of angiotensin-II-forming pathways in rodents and humans. Clin Sci (Lond). 2014;126:461–9. doi:10.1042/CS20130400. This review summarizes the research done on intermediate shorter forms of angiotensinogen and highlights the enzymatic production of Ang-(1-12) from cardiac chymase

    Article  CAS  Google Scholar 

  29. Ferrario CM, Brosnihan KB, Diz DI, Jaiswal N, Khosla MC, Milsted A, et al. Angiotensin-(1-7): a new hormone of the angiotensin system. Hypertension. 1991;18:III126–33.

    Article  CAS  PubMed  Google Scholar 

  30. Ferrario CM, Chappell MC, Tallant EA, Brosnihan KB, Diz DI. Counterregulatory actions of angiotensin-(1-7). Hypertension. 1997;30:535–41. doi:10.1161/01.HYP.30.3.535.

    Article  CAS  PubMed  Google Scholar 

  31. Gomez RA, Belyea B, Medrano S, Pentz ES, Sequeira-Lopez ML. Fate and plasticity of renin precursors in development and disease. Pediatr Nephrol. 2014;29:721–6. doi:10.1007/s00467-013-2688-0.

    Article  PubMed  Google Scholar 

  32. Re RN. Cardiac Ang II: an intracrine hormone? Am J Hypertens. 2003;16:426–7. doi:10.1016/S0895-7061(02)03265-X.

    Article  PubMed  Google Scholar 

  33. Ferrario CM. New physiological concepts of the renin-angiotensin system from the investigation of precursors and products of angiotensin I metabolism. Hypertension. 2010;55:445–52. doi:10.1161/HYPERTENSIONAHA.109.145839.

    Article  CAS  PubMed  Google Scholar 

  34. Ocaranza MP, Michea L, Chiong M, Lagos CF, Lavandero S, Jalil JE. Recent insights and therapeutic perspectives of angiotensin-(1-9) in the cardiovascular system. Clin Sci (Lond). 2014;127:549–57. doi:10.1042/CS20130449.

    Article  CAS  Google Scholar 

  35. •• Nagata S, Kato J, Sasaki K, Minamino N, Eto T, Kitamura K. Isolation and identification of proangiotensin-12, a possible component of the renin-angiotensin system. Biochem Biophys Res Commun. 2006;350:1026–31. doi:10.1016/j.bbrc.2006.09.146. Isolation and initial functional characterization of angiotensin-(1-12) as a novel substrate for Ang II production are first described here

    Article  CAS  PubMed  Google Scholar 

  36. • Nagata S, Hatakeyama K, Asami M, Tokashiki M, Hibino H, Nishiuchi Y, et al. Big angiotensin-25: a novel glycosylated angiotensin-related peptide isolated from human urine. Biochem Biophys Res Commun. 2013;441:757–62. doi:10.1016/j.bbrc.2013.10.124. A 25 amino-acid-long derivative of angiotensinogen, Bang-25, is described as a precursor for Ang II formation by chymase but not renin in human urine

    Article  CAS  PubMed  Google Scholar 

  37. Jessup JA, Trask AJ, Chappell MC, Nagata S, Kato J, Kitamura K, et al. Localization of the novel angiotensin peptide, angiotensin-(1-12), in heart and kidney of hypertensive and normotensive rats. Am J Physiol Heart Circ Physiol. 2008;294:H2614–8. doi:10.1152/ajpheart.91521.2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ferrario CM, Varagic J, Habibi J, Nagata S, Kato J, Chappell MC, et al. Differential regulation of angiotensin-(1-12) in plasma and cardiac tissue in response to bilateral nephrectomy. Am J Physiol Heart Circ Physiol. 2009;296:H1184–92. doi:10.1152/ajpheart.01114.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Trask AJ, Jessup JA, Chappell MC, Ferrario CM. Angiotensin-(1-12) is an alternate substrate for angiotensin peptide production in the heart. Am J Physiol Heart Circ Physiol. 2008;294:H2242–7. doi:10.1152/ajpheart.00175.2008.

    Article  CAS  PubMed  Google Scholar 

  40. Ahmad S, Simmons T, Varagic J, Moniwa N, Chappell MC, Ferrario CM. Chymase-dependent generation of Ang II from angiotensin-(1-12) in human atrial tissue. PLoS One. 2011;6:e28501. doi:10.1371/journal.pone.0028501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ahmad S, Wei CC, Tallaj J, Dell'Italia LJ, Moniwa N, Varagic J, et al. Chymase mediates angiotensin-(1-12) metabolism in normal human hearts. J Am Soc Hypertens. 2013;7:128–36. doi:10.1016/j.jash.2012.12.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. •• Nagata S, Varagic J, Kon ND, Wang H, Groban L, Simington SW, et al. Differential expression of the angiotensin-(1-12)/chymase axis in human atrial tissue. Ther Adv Cardiovasc Dis. 2015;9:168–80. doi:10.1177/1753944715589717. Elevated chymase mRNA expression and enzymatic activity, associated increased Ang-(1-12) levels, in left versus right atrial appendages was found to be correlated with left atrial enlargement in humans, suggesting a role for the Ang-(1-12)/chymase axis in adverse heart remodeling

    Article  CAS  PubMed  Google Scholar 

  43. •• Urata H, Healy B, Stewart RW, Bumpus FM, Husain A. Ang II-forming pathways in normal and failing human hearts. Circ Res. 1990a;66:883–90. doi:10.1161/01.RES.66.4.883. This landmark report documents that ACE is not the major Ang II-forming enzyme in left ventricular tissue from normal and cardiomyopathic patients

    Article  CAS  PubMed  Google Scholar 

  44. Urata H, Kinoshita A, Misono KS, Bumpus FM, Husain A. Identification of a highly specific chymase as the major Ang II-forming enzyme in the human heart. J Biol Chem. 1990b;265:22348–57.

    CAS  PubMed  Google Scholar 

  45. Wolny A, Clozel JP, Rein J, Mory P, Vogt P, Turino M, et al. Functional and biochemical analysis of Ang II-forming pathways in the human heart. Circ Res. 1997;80:219–27. doi:10.1161/01.RES.80.2.219.

    Article  CAS  PubMed  Google Scholar 

  46. •• Wei CC, Hase N, Inoue Y, Bradley EW, Yahiro E, Li M, et al. Mast cell chymase limits the cardiac efficacy of Ang I-converting enzyme inhibitor therapy in rodents. J Clin Invest. 2010;120:1229–39. doi:10.1172/JCI39345. This study provides significant evidence for the key role of chymase in cardiac disease. Here, under chronic ACE inhibition conditions, chymase was found to be upregulated in the hamster heart, where it is the predominant Ang II producing enzyme. Chymase inhibition provided added cardiac benefit when administered in combination with an ACE inhibitor

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Urata H, Boehm KD, Philip A, Kinoshita A, Gabrovsek J, Bumpus FM, et al. Cellular localization and regional distribution of an Ang II-forming chymase in the heart. J Clin Invest. 1993;91:1269–81. doi:10.1172/JCI116325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. •• Zheng J, Wei CC, Hase N, Shi K, Killingsworth CR, Litovsky SH, et al. Chymase mediates injury and mitochondrial damage in cardiomyocytes during acute ischemia/reperfusion in the dog. PLoS One. 2014;9:e94732. doi:10.1371/journal.pone.0094732. This study provides evidence for interstitial upregulation of chymase activity, as well as intracellular chymase localization in cardiomyocytes of large mammals during ischemia/reperfusion, which could be reduced with an oral cymase inhibitor. Administration of chymase inhibitor protected against mitochondrial damage and cardiomyocyte death

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. •• Fu L, Wei CC, Powell PC, Bradley WE, Ahmad S, Ferrario CM, et al. Increased fibroblast chymase production mediates procollagen autophagic digestion in volume overload. J Mol Cell Cardiol. 2016;92:1–9. doi:10.1016/j.yjmcc.2016.01.019. The production of chymase by cardiac fibroblasts is demonstrated in this study using the aortocaval fistula model in the rat to induce volume overload. Fibroblast-produced chymase is associated with extracellular-matrix degradation in heart failure

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. • Ahmad S, Varagic J, VonCannon JL, Groban L, Collawn JF, Dell'Italia LJ, et al. Primacy of cardiac chymase over angiotensin converting enzyme as an angiotensin-(1-12) metabolizing enzyme. Biochem Biophys Res Commun. 2016;478:559–64. doi:10.1016/j.bbrc.2016.07.100. This study demonstrates that Ang-(1-12) is the preferred substrate for Ang II formation in the adult rat heart and confirms chymase rather than ACE as the main Ang II-producing enzyme

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Arakawa H, Chitravanshi VC, Sapru HN. The hypothalamic arcuate nucleus: a new site of cardiovascular action of angiotensin-(1-12) and Ang II. Am J Physiol Heart Circ Physiol. 2011;300:H951–60. doi:10.1152/ajpheart.01144.2010.

    Article  CAS  PubMed  Google Scholar 

  52. Arakawa H, Kawabe K, Sapru HN. Angiotensin-(1-12) in the rostral ventrolateral medullary pressor area of the rat elicits sympathoexcitatory responses. Exp Physiol. 2013;98:94–108. doi:10.1113/expphysiol.2012.067116.

    Article  CAS  PubMed  Google Scholar 

  53. Arnold AC, Isa K, Shaltout HA, Nautiyal M, Ferrario CM, Chappell MC, et al. Angiotensin-(1-12) requires angiotensin converting enzyme and AT1 receptors for cardiovascular actions within the solitary tract nucleus. Am J Physiol Heart Circ Physiol. 2010;299:H763–71. doi:10.1152/ajpheart.00345.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chan KH, Chen YH, Zhang Y, Wong YH, Dun NJ. Angiotensin-[1-12] interacts with angiotensin type 1 receptors. Neuropharmacology. 2014;81:267–73. doi:10.1016/j.neuropharm.2013.06.022.

    Article  CAS  PubMed  Google Scholar 

  55. Chitravanshi VC, Proddutur A, Sapru HN. Cardiovascular actions of angiotensin-(1-12) in the hypothalamic paraventricular nucleus of the rat are mediated via Ang II. Exp Physiol. 2012;97:1001–17. doi:10.1113/expphysiol.2011.062471.

    Article  CAS  PubMed  Google Scholar 

  56. Chitravanshi VC, Sapru HN. Cardiovascular responses elicited by a new endogenous angiotensin in the nucleus tractus solitarius of the rat. Am J Physiol Heart Circ Physiol. 2011;300:H230–40. doi:10.1152/ajpheart.00861.2010.

    Article  CAS  PubMed  Google Scholar 

  57. Moniwa N, Varagic J, Ahmad S, VonCannon JL, Simington SW, Wang H, et al. Hemodynamic and hormonal changes to dual renin-angiotensin system inhibition in experimental hypertension. Hypertension. 2013;61:417–24. doi:10.1161/HYPERTENSIONAHA.112.201889.

    Article  CAS  PubMed  Google Scholar 

  58. Nagata S, Kato J, Kuwasako K, Asami M, Kitamura K. Plasma and tissue concentrations of proangiotensin-12 in rats treated with inhibitors of the renin-angiotensin system. Hypertens Res. 2012;35:234–8. doi:10.1038/hr.2011.165.

    Article  CAS  PubMed  Google Scholar 

  59. Isa K, Garcia-Espinosa MA, Arnold AC, Pirro NT, Tommasi EN, Ganten D, et al. Chronic immunoneutralization of brain angiotensin-(1-12) lowers blood pressure in transgenic (mRen2)27 hypertensive rats. Am J Physiol Regul Integr Comp Physiol. 2009;297:R111–5. doi:10.1152/ajpregu.90588.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Prosser HC, Forster ME, Richards AM, Pemberton CJ. Cardiac chymase converts rat proAngiotensin-12 (PA12) to Ang II: effects of PA12 upon cardiac haemodynamics. Cardiovasc Res. 2009;82:40–50. doi:10.1093/cvr/cvp003.

    Article  CAS  PubMed  Google Scholar 

  61. •• De Mello WC, Dell'Itallia LJ, Varagic J, Ferrario CM. Intracellular angiotensin-(1-12) changes the electrical properties of intact cardiac muscle. Mol Cell Biochem. 2016;422:31–40. doi:10.1007/s11010-016-2801-3. The effects of intracellular Ang-(1-12) on the electrical properties of cardiac tissue are reported for the first time in this study. A decrease in total potassium current mediated by chymase-induced production of Ang II from Ang-(1-12) suggests functional relevance of intracelllular Ang-(1-12)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang H, Jessup JA, Zhao Z, Da Silva J, Lin M, MacNamara LM, et al. Characterization of the cardiac renin angiotensin system in oophorectomized and estrogen-replete mRen2.Lewis rats. PLoS One. 2013;8:e76992. doi:10.1371/journal.pone.0076992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. •• Re RN. A possible mechanism for the progression of chronic renal disease and congestive heart failure. J Am Soc Hypertens. 2015;9:54–63. doi:10.1016/j.jash.2014.09.016. This review describes how tissue RAS may function in an intracrine fashion, and it proposes that an altered intracrine function of tissue RAS may result in chronic degenerative diseases

    Article  PubMed  Google Scholar 

  64. Baker KM, Chernin MI, Schreiber T, Sanghi S, Haiderzaidi S, Booz GW, et al. Evidence of a novel intracrine mechanism in Ang II-induced cardiac hypertrophy. Regul Pept. 2004;120:5–13. doi:10.1016/j.regpep.2004.04.004.

    Article  CAS  PubMed  Google Scholar 

  65. Kumar R, Singh VP, Baker KM. The intracellular renin-angiotensin system: a new paradigm. Trends Endocrinol Metab. 2007;18:208–14. doi:10.1016/j.tem.2007.05.001.

    Article  CAS  PubMed  Google Scholar 

  66. Singh VP, Le B, Khode R, Baker KM, Kumar R. Intracellular Ang II production in diabetic rats is correlated with cardiomyocyte apoptosis, oxidative stress, and cardiac fibrosis. Diabetes. 2008;57:3297–306. doi:10.2337/db08-0805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ferrario CM, Jessup J, Chappell MC, Averill DB, Brosnihan KB, Tallant EA, et al. Effect of angiotensin-converting enzyme inhibition and Ang II receptor blockers on cardiac angiotensin-converting enzyme 2. Circulation. 2005;111:2605–10. doi:10.1161/CIRCULATIONAHA.104.510461.

    Article  CAS  PubMed  Google Scholar 

  68. Varagic J, Ahmad S, VonCannon JL, Moniwa N, Brosnihan KB, Wysocki J, et al. Predominance of AT(1) blockade over mas-mediated angiotensin-(1-7) mechanisms in the regulation of blood pressure and renin-angiotensin system in mRen2.Lewis rats. Am J Hypertens. 2013;26:583–90. doi:10.1093/ajh/hps090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cook JL, Zhang Z, Re RN. In vitro evidence for an intracellular site of angiotensin action. Circ Res. 2001;89:1138–46. doi:10.1161/hh2401.101270.

    Article  CAS  PubMed  Google Scholar 

  70. Cushman DW, Cheung HS, Sabo EF, Ondetti MA. Design of potent competitive inhibitors of angiotensin-converting enzyme. Carboxyalkanoyl and mercaptoalkanoyl amino acids. Biochemistry. 1977;16:5484–91. doi:10.1021/bi00644a014.

    Article  CAS  PubMed  Google Scholar 

  71. Gavras H, Brunner HR, Turini GA, Kershaw GR, Tifft CP, Cuttelod S, et al. Antihypertensive effect of the oral angiotensin converting-enzyme inhibitor SQ 14225 in man. N Engl J Med. 1978;298:991–5. doi:10.1056/NEJM197805042981803.

    Article  CAS  PubMed  Google Scholar 

  72. Duncia JV, Carini DJ, Chiu AT, Johnson AL, Price WA, Wong PC, et al. The discovery of DuP 753, a potent, orally active nonpeptide Ang II receptor antagonist. Med Res Rev. 1992;12:149–91.

    Article  CAS  PubMed  Google Scholar 

  73. Timmermans PB, Wong PC, Chiu AT, Herblin WF, Benfield P, Carini DJ, et al. Ang II receptors and Ang II receptor antagonists. Pharmacol Rev. 1993;45:205–51.

    CAS  PubMed  Google Scholar 

  74. Re RN, Cook JL. Noncanonical intracrine action. J Am Soc Hypertens. 2011;5:435–48. doi:10.1016/j.jash.2011.07.001.

    Article  CAS  PubMed  Google Scholar 

  75. The Heart Outcomes Prevention Evaluation Study Investigators. Effects of an angiotensin-converting–enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. N Engl J Med. 2000;342:145–53. doi:10.1056/NEJM200001203420301.

    Article  Google Scholar 

  76. The SOLVD Investigators. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N Engl J Med. 1991;325:293–302. doi:10.1056/NEJM199108013250501.

    Article  Google Scholar 

  77. Granger CB, McMurray JJ, Yusuf S, Held P, Michelson EL, Olofsson B, et al. For the CHARM investigators and committees. Effects of candesartan in patients with chronic heart failure and reduced left-ventricular systolic function intolerant to angiotensin-converting-enzyme inhibitors: the CHARM-alternative trial. Lancet. 2003;362:772–6. doi:10.1016/s0140-6736(03)14284-5.

    Article  CAS  PubMed  Google Scholar 

  78. Dahlof B, Devereux RB, Kjeldsen SE, Julius S, Beevers G, de Faire U, for the LIFE Study Group, et al. Cardiovascular morbidity and mortality in the losartan intervention for endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet. 2002;359:995–1003. doi:10.1016/s0140-6736(02)08089-3.

    Article  CAS  PubMed  Google Scholar 

  79. McMurray JJ, Ostergren J, Swedberg K, Granger CB, Held P, Michelson EL, for the CHARM Investigators and Committees, et al. Effects of candesartan in patients with chronic heart failure and reduced left-ventricular systolic function taking angiotensin-converting-enzyme inhibitors: the CHARM-added trial. Lancet. 2003;362:767–71. doi:10.1016/S0140-6736(03)14283-3.

    Article  CAS  PubMed  Google Scholar 

  80. Abdulla J, Abildstrom SZ, Christensen E, Kober L, Torp-Pedersen C. A meta-analysis of the effect of angiotensin-converting enzyme inhibitors on functional capacity in patients with symptomatic left ventricular systolic dysfunction. Eur J Heart Fail. 2004;6:927–35. doi:10.1016/j.ejheart.2004.02.002.

    Article  CAS  PubMed  Google Scholar 

  81. O'Meara E, Solomon S, McMurray J, Pfeffer M, Yusuf S, Michelson E, et al. Effect of candesartan on New York Heart Association functional class. Results of the Candesartan in Heart failure: Assessment of Reduction in Mortality and morbidity (CHARM) programme. Eur Heart J. 2004;25:1920–6. doi:10.1016/j.ehj.2004.07.025.

    Article  PubMed  CAS  Google Scholar 

  82. Cohn JN, Johnson G, Ziesche S, Cobb F, Francis G, Tristani F, et al. A comparison of enalapril with hydralazine-isosorbide dinitrate in the treatment of chronic congestive heart failure. N Engl J Med. 1991;325:303–10. doi:10.1056/NEJM199108013250502.

    Article  CAS  PubMed  Google Scholar 

  83. Majani G, Giardini A, Opasich C, Glazer R, Hester A, Tognoni G, et al. Effect of valsartan on quality of life when added to usual therapy for heart failure: results from the Valsartan Heart Failure Trial. J Card Fail. 2005;11:253–9. doi:10.1016/j.cardfail.2004.11.004.

    Article  CAS  PubMed  Google Scholar 

  84. Turnbull F, Neal B, Ninomiya T, Algert C, Arima H, Barzi F, et al. for the Blood Pressure Lowering Treatment Trialists’ Collaboration. Effects of different regimens to lower blood pressure on major cardiovascular events in older and younger adults: meta-analysis of randomised trials. Br Med J (Clin Res Ed). 2008;336:1121–3. doi:10.1136/bmj.39548.738368.BE.

    Article  CAS  Google Scholar 

  85. Jin D, Takai S, Yamada M, Sakaguchi M, Kamoshita K, Ishida K, et al. Impact of chymase inhibitor on cardiac function and survival after myocardial infarction. Cardiovasc Res. 2003;60:413–20. doi:10.1016/S0008-6363(03)00535-2.

    Article  CAS  PubMed  Google Scholar 

  86. Oparil S, Yarows SA, Patel S, Zhang J, Satlin A. Dual inhibition of the renin system by aliskiren and valsartan. Lancet. 2007;370:1126–7. doi:10.1016/S0140-6736(07)61508-6.

    Article  PubMed  Google Scholar 

  87. Ferrario CM. Cardiac remodelling and RAS inhibition. Ther Adv Cardiovasc Dis. 2016;10:162–71. doi:10.1177/1753944716642677.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Balcells E, Meng QC, Johnson Jr WH, Oparil S, Dell'Italia LJ. Ang II formation from ACE and chymase in human and animal hearts: methods and species considerations. Am J Phys. 1997;273:H1769–74.

    CAS  Google Scholar 

  89. Dell'Italia LJ, Husain A. Dissecting the role of chymase in Ang II formation and heart and blood vessel diseases. Curr Opin Cardiol. 2002;17:374–9.

    Article  PubMed  Google Scholar 

  90. Husain A. The chymase-angiotensin system in humans. J Hypertens. 1993;11:1155–9.

    Article  CAS  PubMed  Google Scholar 

  91. Kinugawa T, Osaki S, Kato M, Ogino K, Shimoyama M, Tomikura Y, et al. Effects of the angiotensin-converting enzyme inhibitor alacepril on exercise capacity and neurohormonal factors in patients with mild-to-moderate heart failure. Clin Exp Pharmacol Physiol. 2002;29:1060–5. doi:10.1046/j.1440-1681.2002.03779.x.

    Article  CAS  PubMed  Google Scholar 

  92. Takai S, Jin D, Miyazaki M. New approaches to blockade of the renin-angiotensin-aldosterone system: chymase as an important target to prevent organ damage. J Pharmacol Sci. 2010;113:301–9. doi:10.1254/jphs.10R05FM.

    Article  CAS  PubMed  Google Scholar 

  93. Urata H, Kinoshita A, Perez DM, Misono KS, Bumpus FM, Graham RM, et al. Cloning of the gene and cDNA for human heart chymase. J Biol Chem. 1991;266:17173–9.

    CAS  PubMed  Google Scholar 

  94. •• Takai S, Jin D. Improvement of cardiovascular remodelling by chymase inhibitor. Clin Exp Pharmacol Physiol. 2016;43:387–93. doi:10.1111/1440-1681.12549. This review describes the preclinical basis for the use of chymase inhibition in cardiovascular diseases and puts forward the need to clinically test chymase inhibition in combination with RAS-targeting agents to improve current therapeutic strategies for cardiovascular disease

    Article  CAS  PubMed  Google Scholar 

  95. Kanemitsu H, Takai S, Tsuneyoshi H, Yoshikawa E, Nishina T, Miyazaki M, et al. Chronic chymase inhibition preserves cardiac function after left ventricular repair in rats. Eur J Cardiothorac Surg. 2008;33:25–31. doi:10.1016/j.ejcts.2007.09.040.

    Article  PubMed  Google Scholar 

  96. Jamerson K, Weber MA, Bakris GL, Dahlof B, Pitt B, Shi V, for the ACCOMPLISH Trial Investigators, et al. Benazepril plus amlodipine or hydrochlorothiazide for hypertension in high-risk patients. N Engl J Med. 2008;359:2417–28. doi:10.1056/NEJMoa0806182.

    Article  CAS  PubMed  Google Scholar 

  97. The Acute Infarction Ramipril Efficacy (AIRE) Study Investigators. Effect of ramipril on mortality and morbidity of survivors of acute myocardial infarction with clinical evidence of heart failure. Lancet. 1993;342:821–8.

    Google Scholar 

  98. Wing LM, Reid CM, Ryan P, Beilin LJ, Brown MA, Jennings GL, for the Second Australian National Blood Pressure Study Group, et al. A comparison of outcomes with angiotensin-converting–enzyme inhibitors and diuretics for hypertension in the elderly. N Engl J Med. 2003;348:583–92. doi:10.1056/NEJMoa021716.

    Article  CAS  PubMed  Google Scholar 

  99. Dahlof B, Sever PS, Poulter NR, Wedel H, Beevers DG, Caulfield M, for the ASCOT Investigators, et al. Prevention of cardiovascular events with an antihypertensive regimen of amlodipine adding perindopril as required versus atenolol adding bendroflumethiazide as required, in the Anglo-Scandinavian Cardiac Outcomes Trial-Blood Pressure Lowering Arm (ASCOT-BPLA): a multicentre randomised controlled trial. Lancet. 2005;366:895–906. doi:10.1016/S0140-6736(05)67185-1.

    Article  PubMed  CAS  Google Scholar 

  100. Ryden L, Armstrong PW, Cleland JGF, Horowitz JD, Massie BM, Packer M, on behalf of the ATLAS Study Group, et al. Efficacy and safety of high-dose lisinopril in chronic heart failure patients at high cardiovascular risk, including those with diabetes mellitus. Eur Heart J. 2000;21:1967–78. doi:10.1053/euhj.2000.2311.

    Article  CAS  PubMed  Google Scholar 

  101. Hansson L, Lindholm LH, Niskanen L, Lanke J, Hedner T, Niklason A, et al. Effect of angiotensin-converting-enzyme inhibition compared with conventional therapy on cardiovascular morbidity and mortality in hypertension: the Captopril Prevention Project (CAPPP) randomised trial. Lancet. 1999a;353:611–6. doi:10.1016/S0140-6736(98)05012-0.

    Article  CAS  PubMed  Google Scholar 

  102. Pitt B, Segal R, Martinez FA, Meurers G, Cowley AJ, Thomas I, on behalf of ELITE Study Investigators, et al. Randomised trial of losartan versus captopril in patients over 65 with heart failure (Evaluation of Losartan in the Elderly Study, ELITE). Lancet. 1997;349:747–52. doi:10.1016/S0140-6736(97)01187-2.

    Article  CAS  PubMed  Google Scholar 

  103. Pitt B, Poole-Wilson PA, Segal R, Martinez FA, Dickstein K, Camm AJ, on behalf of the ELITE II investigators, et al. Effect of losartan functions originate from noncanonical pathways n compared with captopril on mortality in patients with symptomatic heart failure: randomised trial—the Losartan Heart Failure Survival Study ELITE II. Lancet. 2000;355:1582–7. doi:10.1016/S0140-6736(00)02213-3.

    Article  CAS  PubMed  Google Scholar 

  104. Fox KM, for the EURopean trial On reduction of cardiac events with Perindopril in stable coronary Artery disease Investigators. Efficacy of perindopril in reduction of cardiovascular events among patients with stable coronary artery disease: randomised, double-blind, placebo-controlled, multicentre trial (the EUROPA study). Lancet. 2003;362:782–8. doi:10.1016/S0140-6736(03)14286-9.

    Article  CAS  PubMed  Google Scholar 

  105. GISSI-3. Effects of lisinopril and transdermal glyceryl trinitrate singly and together on 6-week mortality and ventricular function after acute myocardial infarction. Lancet. 1994;343:1115–22.

    Google Scholar 

  106. Beckett NS, Peters R, Fletcher AE, Staessen JA, Liu L, Dumitrascu D, et al. Treatment of hypertension in patients 80 years of age or older. N Engl J Med. 2008;358:1887–98. doi:10.1056/NEJMoa0801369.

    Article  CAS  PubMed  Google Scholar 

  107. Konstam MA, Neaton JD, Dickstein K, Drexler H, Komajda M, Martinez FA, for the HEAAL Investigators, et al. Effects of high-dose versus low-dose losartan on clinical outcomes in patients with heart failure (HEAAL study): a randomised, double-blind trial. Lancet. 2009;374:1840–8. doi:10.1016/S0140-6736(09)61913-9.

    Article  CAS  PubMed  Google Scholar 

  108. Yusuf S, Sleight P, Pogue J, Bosch J, Davies R, Dagenais G, for the Heart Outcomes Prevention Evaluation Study Investigators. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. N Engl J Med. 2000;342:145–53. doi:10.1056/NEJM200001203420301.

    Article  CAS  PubMed  Google Scholar 

  109. Massie BM, Carson PE, McMurray JJ, Komajda M, McKelvie R, Zile MR, for the for the I-PRESERVE Investigators, et al. Irbesartan in patients with heart failure and preserved ejection fraction. N Engl J Med. 2008;359:2456–67. doi:10.1056/NEJMoa0805450.

    Article  CAS  PubMed  Google Scholar 

  110. Yusuf S, Teo KK, Pogue J, Dyal L, Copland I, Schumacher H, for the ONTARGET Investigators, et al. Telmisartan, ramipril, or both in patients at high risk for vascular events. N Engl J Med. 2008a;358:1547–59. doi:10.1056/NEJMoa0801317.

    Article  CAS  PubMed  Google Scholar 

  111. Dickstein K, Kjekshus J, the Optimaal Steering Committee, for the OPTIMAAL Study Group. Effects of losartan and captopril on mortality and morbidity in high-risk patients after acute myocardial infarction: the OPTIMAAL randomised trial. Optimal trial in myocardial infarction with Ang II antagonist losartan. Lancet. 2002;360:752–60. doi:10.1016/S0140-6736(02)09895-1.

    Article  CAS  PubMed  Google Scholar 

  112. Braunwald E, Domanski MJ, Fowler SE, Geller NL, Gersh BJ, Hsia J, et al. Angiotensin-converting-enzyme inhibition in stable coronary artery disease. N Engl J Med. 2004;351:2058–68. doi:10.1056/NEJMoa042739.

    Article  CAS  PubMed  Google Scholar 

  113. Pfeffer MA, Braunwald E, Moye LA, Basta L, Brown Jr EJ, Cuddy TE, for the SAVE Investigators, et al. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. Results of the survival and ventricular enlargement trial. N Engl J Med. 1992;327:669–77. doi:10.1056/NEJM199209033271001.

    Article  CAS  PubMed  Google Scholar 

  114. Ambrosioni E, Borghi C, Magnani B, for the Survival of Myocardial Infarction Long-Term Evaluation (SMILE) Study Investigators. The effect of the angiotensin-converting-enzyme inhibitor zofenopril on mortality and morbidity after anterior myocardial infarction. N Engl J Med. 1995;332:80–5. doi:10.1056/NEJM199501123320203.

    Article  CAS  PubMed  Google Scholar 

  115. The SOLVD Investigators. Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. N Engl J Med. 1992;327:685–91. doi:10.1056/NEJM199209033271003.

    Article  Google Scholar 

  116. Hansson L, Lindholm LH, Ekbom T, Dahlof B, Lanke J, Schersten B, et al. Randomised trial of old and new antihypertensive drugs in elderly patients: cardiovascular mortality and morbidity the Swedish Trial in Old Patients with Hypertension-2 study. Lancet. 1999b;354:1751–6. doi:10.1016/S0140-6736(99)10327-1.

    Article  CAS  PubMed  Google Scholar 

  117. Kober L, Torp-Pedersen C, Carlsen JE, Bagger H, Eliasen P, Lyngborg K, for the Trandolapril Cardiac Evaluation (TRACE) Study Group, et al. A clinical trial of the angiotensin-converting-enzyme inhibitor trandolapril in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med. 1995;333:1670–6. doi:10.1056/NEJM199512213332503.

    Article  CAS  PubMed  Google Scholar 

  118. Yusuf S, Teo K, Anderson C, Pogue J, Dyal L, Copland I, for the Telmisartan Randomised AssessmeNt Study in, A. C. E. intolerant subjects with cardiovascular Disease Investigators, et al. Effects of the angiotensin-receptor blocker telmisartan on cardiovascular events in high-risk patients intolerant to angiotensin-converting enzyme inhibitors: a randomised controlled trial. Lancet. 2008b;372:1174–83. doi:10.1016/S0140-6736(08)61242-8.

    Article  CAS  PubMed  Google Scholar 

  119. Julius S, Nesbitt SD, Egan BM, Weber MA, Michelson EL, Kaciroti N, for the Trial of Preventing Hypertension Study Investigators, et al. Feasibility of treating prehypertension with an angiotensin-receptor blocker. N Engl J Med. 2006;354:1685–97. doi:10.1056/NEJMoa060838.

    Article  CAS  PubMed  Google Scholar 

  120. Cohn JN, Tognoni G, for the Valsartan Heart Failure Trial Investigators. A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. N Engl J Med. 2001;345:1667–75. doi:10.1056/NEJMoa010713.

    Article  CAS  PubMed  Google Scholar 

  121. Pfeffer MA, McMurray JJ, Velazquez EJ, Rouleau JL, Kober L, Maggioni AP, for the Valsartan in Acute Myocardial Infarction Trial Investigators, et al. Valsartan, captopril, or both in myocardial infarction complicated by heart failure, left ventricular dysfunction, or both. N Engl J Med. 2003;349:1893–906. doi:10.1056/NEJMoa032292.

    Article  CAS  PubMed  Google Scholar 

  122. Julius S, Kjeldsen SE, Brunner H, Hansson L, Platt F, Ekman S, et al. VALUE trial: long-term blood pressure trends in 13,449 patients with hypertension and high cardiovascular risk. Am J Hypertens. 2003;16:544–8. doi:10.1016/S0895-7061(03)00904-X.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos M. Ferrario.

Ethics declarations

Conflict of Interest

Dr. Ferrario reports grants from National Heart, Lung Blood Institute of the NIH; and personal fees from Sanofi and Daiichi Sankyo. Drs. Reyes, Varagic, Ahmad, VonCannon, Kon, Wang, Groban, Cheng, and Dell’Italia declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

LIST OF MENTIONED DRUGS

– Angiotensin-converting enzyme inhibitors: captopril, lisinopril, ramipril, enalapril, perindopril, trandolapril

– Angiotensin-converting enzyme 2 inhibitors: MLN-4760

– Angiotensin II receptor blockers: losartan, candesartan, olmesartan, irbesartan, telmisartan, valsartan

– Chymase inhibitors: chymostatin

– Neprilysin inhibitors: SHC39370

This article is part of the Topical Collection on Hypertension and the Kidney

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reyes, S., Varagic, J., Ahmad, S. et al. Novel Cardiac Intracrine Mechanisms Based on Ang-(1-12)/Chymase Axis Require a Revision of Therapeutic Approaches in Human Heart Disease. Curr Hypertens Rep 19, 16 (2017). https://doi.org/10.1007/s11906-017-0708-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-017-0708-3

Keywords

Navigation