Skip to main content

Advertisement

Log in

Non-infectious Pulmonary Diseases and HIV

  • Complications of Antiretroviral Therapy (G McComsey, Section Editor)
  • Published:
Current HIV/AIDS Reports Aims and scope Submit manuscript

Abstract

Pulmonary complications remain among the most frequent causes of morbidity and mortality for individuals with HIV despite the advent of antiretroviral therapy (ART) and improvement in its efficacy and availability. The prevalence of non-infectious pulmonary diseases is rising in this population, reflecting both an increase in smoking and the independent risk associated with HIV. The unique mechanisms of pulmonary disease in these patients remain poorly understood, and direct effects of HIV, genetic predisposition, inflammatory pathways, and co-infections have all been implicated. Lung cancer, chronic obstructive pulmonary disease (COPD), and pulmonary hypertension are the most prevalent non-infectious pulmonary diseases in persons with HIV, and the risk of each of these diseases is higher among HIV-infected (HIV+) persons than in the general population. This review discusses the latest advances in the literature on these important complications of HIV infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Davis JL, Fei M, Huang L. Respiratory infection complicating HIV infection. Curr Opin Infect Dis. 2008;21:184–90.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Engels EA, Brock MV, Chen J, et al. Elevated incidence of lung cancer among HIV-infected individuals. J Clin Oncol. 2006;24:1383–8.

    Article  PubMed  Google Scholar 

  3. Crothers K, Butt AA, Gibert CL, et al. Increased COPD among HIV-positive compared to HIV-negative veterans. Chest. 2006;130:1326–33.

    Article  PubMed  Google Scholar 

  4. Gingo MR, George MP, Kessinger CJ, et al. Pulmonary function abnormalities in HIV-infected patients during the current antiretroviral therapy era. Am J Respir Crit Care Med. 2010;182:790–6.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Rossouw TM, Anderson R, Feldman C. Impact of HIV infection and smoking on lung immunity and related disorders. Eur Respir J. 2015;46:1781–95.

    Article  PubMed  Google Scholar 

  6. Kirk GD, Merlo C, O’Driscoll P, et al. HIV infection is associated with an increased risk for lung cancer, independent of smoking. Clin Infect Dis. 2007;45:103–10.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Robbins HA, Pfeiffer RM, Shiels MS, et al. Excess cancers among HIV-infected people in the United States. J Natl Cancer Inst 2015;107. 10.1093/jnci/dju503. Print 2015 Apr.

  8. Staitieh B, Guidot DM. Noninfectious pulmonary complications of human immunodeficiency virus infection. Am J Med Sci. 2014;348:502–11.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Simard EP, Engels EA. Cancer as a cause of death among people with AIDS in the United States. Clin Infect Dis. 2010;51:957–62.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Silverberg MJ, Lau B, Achenbach CJ, et al. Cumulative incidence of cancer among persons with HIV in North America: a cohort study. Ann Intern Med. 2015;163:507–18.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sigel K, Wisnivesky J, Gordon K, et al. HIV as an independent risk factor for incident lung cancer. AIDS. 2012;26:1017–25. The authors examined a large cohort of 37,294 HIV-infected Veterans compared to 75,750 uninfected Veterans with excellent follow-up to compare the incidence of lung cancer. In models adjusted for smoking and other potential confounding factors, they estimated the adjusted incidence rate ratio of lung cancer associated with HIV to be 1.7 95% CI:(1.5–1.9), suggesting an independent risk of lung cancer in HIV.

  12. Winstone TA, Man SF, Hull M, et al. Epidemic of lung cancer in patients with HIV infection. Chest. 2013;143:305–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shiels MS, Pfeiffer RM, Engels EA. Age at cancer diagnosis among persons with AIDS in the United States. Ann Intern Med. 2010;153:452–60.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Silverberg MJ, Chao C, Leyden WA, et al. HIV infection, immunodeficiency, viral replication, and the risk of cancer. Cancer Epidemiol Biomarkers Prev. 2011;20:2551–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Reekie J, Kosa C, Engsig F, et al. Relationship between current level of immunodeficiency and non-acquired immunodeficiency syndrome-defining malignancies. Cancer. 2010;116:5306–15.

    Article  PubMed  Google Scholar 

  16. Kesselring A, Gras L, Smit C, et al. Immunodeficiency as a risk factor for non-AIDS-defining malignancies in HIV-1-infected patients receiving combination antiretroviral therapy. Clin Infect Dis. 2011;52:1458–65.

    Article  CAS  PubMed  Google Scholar 

  17. Hessol NA, Martinez-Maza O, Levine AM, et al. Lung cancer incidence and survival among HIV-infected and uninfected women and men. AIDS. 2015;29:1183–93.

    Article  PubMed  Google Scholar 

  18. Collini P, Morris A. Maintaining lung health with longstanding HIV. Curr Opin Infect Dis. 2016;29:31–8.

    Article  CAS  PubMed  Google Scholar 

  19. Kawabata S, Heredia A, Gills J, et al. Impact of HIV on lung tumorigenesis in an animal model. AIDS. 2015;29:633–5.

    CAS  PubMed  Google Scholar 

  20. Androutsopoulos VP, Tsatsakis AM, Spandidos DA. Cytochrome P450 CYP1A1: wider roles in cancer progression and prevention. BMC Cancer. 2009;9:187. 2407-9-187.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bruyand M, Le Marec F, Lavole A, et al. Protease inhibitors exposure is not related to lung cancer risk in HIV smoker patients: a nested case-control study. AIDS. 2015;29:1105–9.

    Article  CAS  PubMed  Google Scholar 

  22. Bruyand M, Ryom L, Shepherd L, et al. Cancer risk and use of protease inhibitor or nonnucleoside reverse transcriptase inhibitor-based combination antiretroviral therapy: the D:A:D study. J Acquir Immune Defic Syndr. 2015;68:568–77.

    Article  CAS  PubMed  Google Scholar 

  23. Team NLSTR, Aberle DR, Adams AM, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med. 2011;365:395–409.

    Article  Google Scholar 

  24. Sigel K, Wisnivesky J, Shahrir S, et al. Findings in asymptomatic HIV-infected patients undergoing chest computed tomography testing: implications for lung cancer screening. AIDS. 2014;28:1007–14.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hulbert A, Hooker CM, Keruly JC, et al. Prospective CT screening for lung cancer in a high-risk population: HIV-positive smokers. J Thorac Oncol. 2014;9:752–9.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Makinson A, Eymard-Duvernay S, Raffi F, et al. Feasibility and efficacy of early lung cancer diagnosis with chest computed tomography in HIV-infected smokers. AIDS. 2016;30:573–82. The risks and benefits of lung cancer screening were assessed in this single arm trial of chest CT in a subset of HIV-infected smokers in France. Patients were eligible for enrollment if they were older than 40, had a smoking history of at least 20 pack-years and had a CD4 cell count below 350. 442 patients were enrolled and underwent chest CT with ultimate prevalence of lung cancer of 2.03% (95% CI: 0.90-3.80) translating to a number needed to screen of 49 (95% CI: 26-111). No serious adverse events from procedures related to screening were reported. This suggests a possible benefit of screening for lung cancer in a subset of HIV-infected patients.

    Article  PubMed  Google Scholar 

  27. Shcherba M, Shuter J, Haigentz Jr M. Current questions in HIV-associated lung cancer. Curr Opin Oncol. 2013;25:511–7.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Brugnaro P, Morelli E, Cattelan F, et al. Non-AIDS definings malignancies among human immunodeficiency virus-positive subjects: epidemiology and outcome after two decades of HAART era. World J Virol. 2015;4:209–18.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Marcus JL, Chao C, Leyden WA, et al. Survival among HIV-infected and HIV-uninfected individuals with common non-AIDS-defining cancers. Cancer Epidemiol Biomarkers Prev. 2015;24:1167–73.

    Article  PubMed  Google Scholar 

  30. Suneja G, Shiels MS, Angulo R, et al. Cancer treatment disparities in HIV-infected individuals in the United States. J Clin Oncol. 2014;32:2344–50.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Coghill AE, Shiels MS, Suneja G, et al. Elevated cancer-specific mortality among HIV-infected patients in the United States. J Clin Oncol. 2015;33:2376–83. This large cohort study, linking HIV/AIDS and cancer registries in 6 states, determined differences in cancer-specific mortality by HIV status. After adjustment for demographic features, cancer stage and diagnosis year, among those with lung cancer the estimated hazard ratio for cancer specific mortality was 1.28 (95% CI 1.17-1.39) comparing HIV-infected to uninfected patients. This suggests higher lung cancer-specific mortality in HIV, although it is unclear if this would persist with finer adjustment for other confounding variables.

    Article  PubMed  Google Scholar 

  32. Rengan R, Mitra N, Liao K, et al. Effect of HIV on survival in patients with non-small-cell lung cancer in the era of highly active antiretroviral therapy: a population-based study. Lancet Oncol. 2012;13:1203–9.

    Article  PubMed  Google Scholar 

  33. Torre LA, Siegel RL, Jemal A. Lung cancer statistics. Adv Exp Med Biol. 2016;893:1–19.

    Article  PubMed  Google Scholar 

  34. Thun M, Peto R, Boreham J, et al. Stages of the cigarette epidemic on entering its second century. Tob Control. 2012;21:96–101.

    Article  PubMed  Google Scholar 

  35. World Health Organization, Tobacco Free Initiative. WHO report of the global tobacco epidemic, 2015, 2015. Available at http://www.who.int/tobacco/global_report/2015/en/.

  36. Casper C. The increasing burden of HIV-associated malignancies in resource-limited regions. Annu Rev Med. 2011;62:157–70.

    Article  CAS  PubMed  Google Scholar 

  37. Petoumenos K, Hui E, Kumarasamy N, et al. Cancers in the TREAT Asia HIV Observational Database (TAHOD): a retrospective analysis of risk factors. J Int AIDS Soc. 2010;13:51. 2652-13-51.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Mutyaba I, Phipps W, Krantz EM, et al. A Population-level evaluation of the effect of antiretroviral therapy on cancer incidence in Kyadondo County, Uganda, 1999–2008. J Acquir Immune Defic Syndr. 2015;69:481–6.

    Article  CAS  PubMed  Google Scholar 

  39. Mbulaiteye SM, Katabira ET, Wabinga H, et al. Spectrum of cancers among HIV-infected persons in Africa: the Uganda AIDS-Cancer Registry Match Study. Int J Cancer. 2006;118:985–90.

    Article  CAS  PubMed  Google Scholar 

  40. Jaquet A, Odutola M, Ekouevi DK, et al. Cancer and HIV infection in referral hospitals from four West African countries. Cancer Epidemiol. 2015;39:1060–5.

    Article  PubMed  Google Scholar 

  41. George MP, Kannass M, Huang L, et al. Respiratory symptoms and airway obstruction in HIV-infected subjects in the HAART era. PLoS One. 2009;4:e6328.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Samperiz G, Guerrero D, Lopez M, et al. Prevalence of and risk factors for pulmonary abnormalities in HIV-infected patients treated with antiretroviral therapy. HIV Med. 2014;15:321–9.

    Article  CAS  PubMed  Google Scholar 

  43. Makinson A, Hayot M, Eymard-Duvernay S, et al. High prevalence of undiagnosed COPD in a cohort of HIV-infected smokers. Eur Respir J. 2015;45:828–31.

    Article  CAS  PubMed  Google Scholar 

  44. Gingo MR, Balasubramani GK, Rice TB, et al. Pulmonary symptoms and diagnoses are associated with HIV in the MACS and WIHS cohorts. BMC Pulm Med. 2014;14:75. 2466-14-75.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Drummond MB, Kirk GD, Astemborski J, et al. Association between obstructive lung disease and markers of HIV infection in a high-risk cohort. Thorax. 2012;67:309–14.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Drummond MB, Merlo CA, Astemborski J, et al. The effect of HIV infection on longitudinal lung function decline among IDUs: a prospective cohort. AIDS. 2013;27:1303–11.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Simonetti JA, Gingo MR, Kingsley L, et al. Pulmonary function in HIV-infected recreational drug users in the era of anti-retroviral therapy. J AIDS Clin Res. 2014;5:365.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Rahmanian SD, Wood KL, Lin S, et al. Gender differences in pulmonary function, respiratory symptoms, and macrophage proteomics among HIV-infected smokers. Scientifica (Cairo). 2014;2014:613689.

    Google Scholar 

  49. Gingo MR, Balasubramani GK, Kingsley L, et al. The impact of HAART on the respiratory complications of HIV infection: longitudinal trends in the MACS and WIHS cohorts. PLoS One. 2013;8:e58812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kunisaki KM, Niewoehner DE, Collins G, et al. Pulmonary function in an international sample of HIV-positive, treatment-naive adults with CD4 counts >500 cells/μL: a substudy of the INSIGHT Strategic Timing of AntiRetroviral Treatment (START) trial. HIV Med. 2015;16 Suppl 1:119–28.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Popescu I, Drummond MB, Gama L, et al. Activation-induced cell death drives profound lung CD4(+) T-cell depletion in HIV-associated chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2014;190:744–55. This study examined markers of T-cell immunity in peripheral blood and bronchoalveolar lavage fluid using flow cytometry comparing HIV-infected patients with COPD to HIV-infected patients without COPD and uninfected patients with COPD. They found that lung mucosal CD4 T-cell deletion and HIV-specific lung mucosal immune dysregulation were associated with COPD in HIV, adding evidence that lung-specific immune dysfunction is related to the development of COPD in HIV.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Erb-Downward JR, Thompson DL, Han MK, et al. Analysis of the lung microbiome in the “healthy” smoker and in COPD. PLoS One. 2011;6:e16384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sze MA, Dimitriu PA, Hayashi S, et al. The lung tissue microbiome in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2012;185:1073–80.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Cui L, Morris A, Huang L, et al. The microbiome and the lung. Ann Am Thorac Soc. 2014;11 Suppl 4:S227–32.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Cui L, Lucht L, Tipton L, et al. Topographic diversity of the respiratory tract mycobiome and alteration in HIV and lung disease. Am J Respir Crit Care Med. 2015;191:932–42. In this study, respiratory tract specimens from 56 patients were sequenced to examine the fungal microbiome comparing HIV-infected and uninfected subjects with and without COPD. There were significant differences in fungal communities in the lavage fluid by HIV and COPD status and over-representation of Pneumocystis jirovecii was observed in both these groups. This study suggests that alterations in the fungal microbiome may link lung dysfunction and HIV. Future studies of the microbiome in HIV-related COPD hold great promise to further elucidate the pathophysiology of chronic lung disease in this population.

  56. Lozupone C, Cota-Gomez A, Palmer BE, et al. Widespread colonization of the lung by Tropheryma whipplei in HIV infection. Am J Respir Crit Care Med. 2013;187:1110–7.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Diaz PT, King MA, Pacht ER, et al. The pathophysiology of pulmonary diffusion impairment in human immunodeficiency virus infection. Am J Respir Crit Care Med. 1999;160:272–7.

    Article  CAS  PubMed  Google Scholar 

  58. Gingo MR, He J, Wittman C, et al. Contributors to diffusion impairment in HIV-infected persons. Eur Respir J. 2014;43:195–203.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Diaz PT, Wewers MD, Pacht E, et al. Respiratory symptoms among HIV-seropositive individuals. Chest. 2003;123:1977–82.

    Article  PubMed  Google Scholar 

  60. Diaz PT, King MA, Pacht ER, et al. Increased susceptibility to pulmonary emphysema among HIV-seropositive smokers. Ann Intern Med. 2000;132:369–72.

    Article  CAS  PubMed  Google Scholar 

  61. Crothers K, McGinnis K, Kleerup E, et al. HIV infection is associated with reduced pulmonary diffusing capacity. J Acquir Immune Defic Syndr. 2013;64:271–8.

    Article  PubMed  Google Scholar 

  62. Guaraldi G, Besutti G, Scaglioni R, et al. The burden of image based emphysema and bronchiolitis in HIV-infected individuals on antiretroviral therapy. PLoS One. 2014;9:e109027.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Petrache I, Diab K, Knox KS, et al. HIV associated pulmonary emphysema: a review of the literature and inquiry into its mechanism. Thorax. 2008;63:463–9.

    Article  CAS  PubMed  Google Scholar 

  64. Attia EF, Akgun KM, Wongtrakool C, et al. Increased risk of radiographic emphysema in HIV is associated with elevated soluble CD14 and nadir CD4. Chest. 2014;146:1543–53.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Barnes PJ. Cellular and molecular mechanisms of chronic obstructive pulmonary disease. Clin Chest Med. 2014;35:71–86.

    Article  PubMed  Google Scholar 

  66. Besutti G, Raggi P, Zona S, et al. Independent association of subclinical coronary artery disease and emphysema in HIV-infected patients. HIV Med 2015.

  67. Liu JC, Leung JM, Ngan DA, et al. Absolute leukocyte telomere length in HIV-infected and uninfected individuals: evidence of accelerated cell senescence in HIV-associated chronic obstructive pulmonary disease. PLoS One. 2015;10:e0124426.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Campo M, Oursler KK, Huang L, et al. Association of chronic cough and pulmonary function with 6-minute walk test performance in HIV infection. J Acquir Immune Defic Syndr. 2014;65:557–63.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Attia EF, McGinnis KA, Feemster LC, et al. Association of COPD with risk for pulmonary infections requiring hospitalization in HIV-infected veterans. J Acquir Immune Defic Syndr. 2015;70:280–8.

    Article  PubMed  Google Scholar 

  70. Lambert AA, Kirk GD, Astemborski J, et al. HIV infection is associated with increased risk for acute exacerbation of COPD. J Acquir Immune Defic Syndr. 2015;69:68–74.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Depp TB, McGinnis KA, Kraemer K, et al. Risk factors associated with acute exacerbation of chronic obstructive pulmonary disease in HIV-infected and uninfected patients. AIDS. 2016;30:455–63.

    PubMed  Google Scholar 

  72. UNAIDS. How AIDS changed everything., 2015. Available at: http://www.unaids.org/en/resources/documents/2015/MDG6_15years-15lessonsfromtheAIDSresponse.

  73. Finney LJ, Feary JR, Leonardi-Bee J, et al. Chronic obstructive pulmonary disease in sub-Saharan Africa: a systematic review. Int J Tuberc Lung Dis. 2013;17:583–9.

    Article  CAS  PubMed  Google Scholar 

  74. Bloomfield GS, Khazanie P, Morris A, et al. HIV and noncommunicable cardiovascular and pulmonary diseases in low- and middle-income countries in the ART era: what we know and best directions for future research. J Acquir Immune Defic Syndr. 2014;67 Suppl 1:S40–53.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Akanbi MO, Taiwo BO, Achenbach CJ, et al. HIV associated chronic obstructive pulmonary disease in Nigeria. J AIDS Clin Res. 2015;6:453.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Pefura-Yone EW, Fodjeu G, Kengne AP, et al. Prevalence and determinants of chronic obstructive pulmonary disease in HIV infected patients in an African country with low level of tobacco smoking. Respir Med. 2015;109:247–54.

    Article  PubMed  Google Scholar 

  77. Pacek LR, Cioe PA. Tobacco use, use disorders, and smoking cessation interventions in persons living with HIV. Curr HIV/AIDS Rep. 2015;12:413–20.

    Article  PubMed  Google Scholar 

  78. Isasti G, Moreno T, Perez I, et al. High prevalence of pulmonary arterial hypertension in a cohort of asymptomatic HIV-infected patients. AIDS Res Hum Retroviruses. 2013;29:231–4.

    Article  PubMed  Google Scholar 

  79. Barnett CF, Hsue PY. Human immunodeficiency virus-associated pulmonary arterial hypertension. Clin Chest Med. 2013;34:283–92.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Butrous G. Human immunodeficiency virus-associated pulmonary arterial hypertension: considerations for pulmonary vascular diseases in the developing world. Circulation. 2015;131:1361–70.

    Article  PubMed  Google Scholar 

  81. Tcherakian C, Couderc LJ, Humbert M, et al. Inflammatory mechanisms in HIV-associated pulmonary arterial hypertension. Semin Respir Crit Care Med. 2013;34:645–53.

    Article  PubMed  Google Scholar 

  82. Feijoo MQ, Toro R, Lopez Vazquez de la Torre M, et al. Relationship between endothelin-1 levels and pulmonary arterial hypertension in HIV-infected patients. AIDS. 2014;28:2693–9.

    Article  CAS  PubMed  Google Scholar 

  83. Parikh RV, Scherzer R, Nitta EM, et al. Increased levels of asymmetric dimethylarginine are associated with pulmonary arterial hypertension in HIV infection. AIDS. 2014;28:511–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. George MP, Champion HC, Simon M, et al. Physiologic changes in a nonhuman primate model of HIV-associated pulmonary arterial hypertension. Am J Respir Cell Mol Biol. 2013;48:374–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Dellegrottaglie S, Garcia-Alvarez A, Guarini P, et al. Prevalence and severity of ventricular dysfunction in patients with HIV-related pulmonary arterial hypertension. Heart Lung. 2014;43:256–61.

    Article  PubMed  Google Scholar 

  86. Isiguzo GC, Okeahialam BN, Danbauchi SS, et al. Contributions of pulmonary hypertension to HIV-related cardiac dysfunction. Indian Heart J. 2013;65:644–9.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Dalvi P, Wang K, Mermis J, et al. HIV-1/cocaine induced oxidative stress disrupts tight junction protein-1 in human pulmonary microvascular endothelial cells: role of Ras/ERK1/2 pathway. PLoS One. 2014;9:e85246.

    Article  PubMed  PubMed Central  Google Scholar 

  88. George MP, Champion HC, Gladwin MT, et al. Injection drug use as a “second hit” in the pathogenesis of HIV-associated pulmonary hypertension. Am J Respir Crit Care Med. 2012;185:1144–6.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Spikes L, Dalvi P, Tawfik O, et al. Enhanced pulmonary arteriopathy in simian immunodeficiency virus-infected macaques exposed to morphine. Am J Respir Crit Care Med. 2012;185:1235–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Correale M, Palmiotti GA, Lo Storto MM, et al. HIV-associated pulmonary arterial hypertension: from bedside to the future. Eur J Clin Invest. 2015;45:515–28.

    Article  PubMed  Google Scholar 

  91. Degano B, Guillaume M, Savale L, et al. HIV-associated pulmonary arterial hypertension: survival and prognostic factors in the modern therapeutic era. AIDS. 2010;24:67–75.

    Article  PubMed  Google Scholar 

  92. Li Y, Li XH, Yu ZX, et al. HIV protease inhibitors in pulmonary hypertension: rationale and design of a pilot trial in idiopathic pulmonary arterial hypertension. Pulm Circ. 2015;5:538–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Amsellem V, Lipskaia L, Abid S, et al. CCR5 as a treatment target in pulmonary arterial hypertension. Circulation. 2014;130:880–91. This study used a mouse model to explore the effect of CCR5, a receptor for cellular HIV entry present in both macrophages and vascular cells, on pulmonary arterial hypertension. The investigators used both gene disruption and pharmacologic methods (using the CCR5 antagonist maraviroc) to inactivate the CCR5 receptor. When exposed to hypoxic conditions, the CCR5 inactive mice demonstrated decreased inflammatory responses and proliferation of pulmonary artery smooth muscle, both of which are associated with the development of pulmonary hypertension. This study highlights the potential role of the CCR5 pathway in pulmonary hypertension and suggests a possible benefit of maraviroc in patients with HIV-associated pulmonary hypertension.

  94. Thienemann F, Sliwa K, Rockstroh JK. HIV and the heart: the impact of antiretroviral therapy: a global perspective. Eur Heart J. 2013;34:3538–46.

    Article  CAS  PubMed  Google Scholar 

  95. Bigna JJ, Sime PS, Koulla-Shiro S. HIV related pulmonary arterial hypertension: epidemiology in Africa, physiopathology, and role of antiretroviral treatment. AIDS Res Ther. 2015;12:36. 015-0078-3. eCollection 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Syed FF, Sani MU. Recent advances in HIV-associated cardiovascular diseases in Africa. Heart. 2013;99:1146–53.

    Article  PubMed  Google Scholar 

  97. Chillo P, Bakari M, Lwakatare J. Echocardiographic diagnoses in HIV-infected patients presenting with cardiac symptoms at Muhimbili National Hospital in Dar es Salaam, Tanzania. Cardiovasc J Afr. 2012;23:90–7.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Kolosionek E, Crosby A, Harhay MO, et al. Pulmonary vascular disease associated with schistosomiasis. Expert Rev Anti Infect Ther. 2010;8:1467–73.

    Article  CAS  PubMed  Google Scholar 

  99. Kolosionek E, King J, Rollinson D, et al. Schistosomiasis causes remodeling of pulmonary vessels in the lung in a heterogeneous localized manner: detailed study. Pulm Circ. 2013;3:356–62.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Kariuki W, Manuel JI, Kariuki N, et al. HIV and smoking: associated risks and prevention strategies. HIV AIDS (Auckl). 2015;8:17–36.

    Google Scholar 

  101. Keith A, Dong Y, Shuter J, et al. Behavioral interventions for tobacco use in HIV-infected smokers: a meta-analysis. J Acquir Immune Defic Syndr 2016.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Triplette.

Ethics declarations

Conflict of Interest

Matthew Triplette reports grants from NIH/NHLBI, during the conduct of the study. Kristina Crothers and Engi F. Attia declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Complications of Antiretroviral Therapy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Triplette, M., Crothers, K. & Attia, E.F. Non-infectious Pulmonary Diseases and HIV. Curr HIV/AIDS Rep 13, 140–148 (2016). https://doi.org/10.1007/s11904-016-0313-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11904-016-0313-0

Keywords

Navigation