Skip to main content
Log in

Genetics and pharmacogenetics in heart failure

  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Heart failure is a heterogeneous disease, the development and pathophysiology of which involves complex interactions between genetic and environmental factors. It is well known that there are several heritable forms of heart failure in which genetic variation makes an individual more likely to develop the disease; however, less is clear about the degree to which genetics plays a role in the pathogenesis of more classic forms of heart failure. Several studies have been performed in patients with heart failure to determine the influence of modifier genes on exercise capacity, cardiovascular and pulmonary function, and outcomes, including survival. Given the variability in the response to pharmacologic treatment in patients with heart failure, there is an emerging interest in the optimal pharmacologic intervention for a given genotype in patients with heart failure. This review focuses primarily on several modifier genes, principally those associated with regulation of the adrenergic and rennin-angiotensinaldosterone systems and those important to vascular control in heart failure, as well as the impact of these genes in the response to treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Butler J, Hanumanthu S, Chomsky D, et al.: Frequency of low-risk hospital admissions for heart failure. Am J Cardiol 1998, 81:41–44.

    Article  PubMed  CAS  Google Scholar 

  2. O’Connell JB, Bristow MR: Economic impact of heart failure in the United States: time for a different approach. J Heart Lung Transplant 1994, 13:S107–S112.

    PubMed  CAS  Google Scholar 

  3. Song L, DePalma SR, Kharlap M, et al.: Novel locus for an inherited cardiomyopathy maps to chromosome 7. Circulation 2006, 113:2186–2192.

    Article  PubMed  Google Scholar 

  4. Tsoutsman T, Lam L, Semsarian C: Genes, calcium and modifying factors in hypertrophic cardiomyopathy. Clin Exp Pharmacol Physiol 2006, 33:139–145.

    Article  PubMed  CAS  Google Scholar 

  5. Grunig E, Tasman JA, Kucherer H, et al.: Frequency and phenotypes of familial dilated cardiomyopathy. J Am Coll Cardiol 1998, 31:186–194.

    Article  PubMed  CAS  Google Scholar 

  6. Marian AJ, Roberts R: The molecular genetic basis for hypertrophic cardiomyopathy. J Mol Cell Cardiol 2001, 33:655–670.

    Article  PubMed  CAS  Google Scholar 

  7. Marian AJ, Roberts R: Molecular genetic basis of hypertrophic cardiomyopathy: genetic markers for sudden cardiac death. J Cardiovasc Electrophysiol 1998, 9:88–99.

    Article  PubMed  CAS  Google Scholar 

  8. Liggett SB, Mialet-Perez J, Thaneemit-Chen S, et al.: A polymorphism within a conserved beta(1)-adrenergic receptor motif alters cardiac function and beta-blocker response in human heart failure. Proc Natl Acad Sci U S A 2006, 103:11288–11293.

    Article  PubMed  CAS  Google Scholar 

  9. Small KM, Wagoner LE, Levin AM, et al.: Synergistic polymorphisms of beta1-and alpha2C-adrenergic receptors and the risk of congestive heart failure. N Engl J Med 2002, 347:1135–1142.

    Article  PubMed  CAS  Google Scholar 

  10. Pilbrow AP, Palmer BR, Frampton CM, et al.: Angiotensinogen M235T and T174M gene polymorphisms in combination doubles the risk of mortality in heart failure. Hypertension 2007, 49:322–327.

    Article  PubMed  CAS  Google Scholar 

  11. Schelleman H, Klungel OH, Witteman JC, et al.: Angiotensinogen M235T polymorphism and the risk of myocardial infarction and stroke among hypertensive patients on ACE-inhibitors or beta-blockers. Eur J Hum Genet 2007, 15:478–484.

    Article  PubMed  CAS  Google Scholar 

  12. Caulfield M, Lavender P, Farrall M, et al.: Linkage of the angiotensinogen gene to essential hypertension. N Engl J Med 1994, 330:1629–1633.

    Article  PubMed  CAS  Google Scholar 

  13. Jeunemaitre X, Soubrier F, Kotelevtsev YV, et al.: Molecular basis of human hypertension: role of angiotensinogen. Cell 1992, 71:169–180.

    Article  PubMed  CAS  Google Scholar 

  14. Tang W, Devereux RB, Rao DC, et al.: Associations between angiotensinogen gene variants and left ventricular mass and function in the HyperGEN study. Am Heart J 2002, 143:854–860.

    Article  PubMed  CAS  Google Scholar 

  15. Nemer M, Dali-Youcef N, Wang H, et al.: Mechanisms of angiotensin II-dependent progression to heart failure. Novartis Found Symp 2006, 274:58–72, 152–155, 272–276.

    Article  PubMed  CAS  Google Scholar 

  16. Pilati M, Cicoira M, Zanolla L, et al.: The role of angiotensinconverting enzyme polymorphism in congestive heart failure. Congest Heart Fail 2004, 10:87–95.

    Article  PubMed  CAS  Google Scholar 

  17. Cascorbi I, Paul M, Kroemer HK: Pharmacogenomics of heart failure—focus on drug disposition and action. Cardiovasc Res 2004, 64:32–39.

    Article  PubMed  CAS  Google Scholar 

  18. Ulgen MS, Ozturk O, Alan S, et al.: The relationship between angiotensin-converting enzyme (insertion/deletion) gene polymorphism and left ventricular remodeling in acute myocardial infarction. Coron Artery Dis 2007, 18:153–157.

    Article  PubMed  Google Scholar 

  19. Donahue MP, Marchuk DA, Rockman HA: Redefining heart failure: the utility of genomics. J Am Coll Cardiol 2006, 48:1289–1298.

    Article  PubMed  Google Scholar 

  20. Abraham MR, Olson LJ, Joyner MJ, et al.: Angiotensin-converting enzyme genotype modulates pulmonary function and exercise capacity in treated patients with congestive stable heart failure. Circulation 2002, 106:1794–1799.

    Article  PubMed  CAS  Google Scholar 

  21. Schunkert H: Polymorphism of the angiotensin-converting enzyme gene and cardiovascular disease. J Mol Med 1997, 75:867–875.

    Article  PubMed  CAS  Google Scholar 

  22. Hindorff LA, Heckbert SR, Tracy R, et al.: Angiotensin II type 1 receptor polymorphisms in the cardiovascular health study: relation to blood pressure, ethnicity, and cardiovascular events. Am J Hypertens 2002, 15:1050–1056.

    Article  PubMed  CAS  Google Scholar 

  23. Brodde OE: Beta 1-and beta 2-adrenoceptors in the human heart: properties, function, and alterations in chronic heart failure. Pharmacol Rev 1991, 43:203–242.

    PubMed  CAS  Google Scholar 

  24. Brodde OE, Bruck H, Leineweber K, et al.: Presence, distribution and physiological function of adrenergic and muscarinic receptor subtypes in the human heart. Basic Res Cardiol 2001, 96:528–538.

    Article  PubMed  CAS  Google Scholar 

  25. Liew CC, Dzau VJ: Molecular genetics and genomics of heart failure. Nat Rev Genet 2004, 5:811–825.

    Article  PubMed  CAS  Google Scholar 

  26. Tevaearai HT, Eckhart AD, Walton GB, et al.: Myocardial gene transfer and overexpression of beta2-adrenergic receptors potentiates the functional recovery of unloaded failing hearts. Circulation 2002, 106:124–129.

    Article  PubMed  CAS  Google Scholar 

  27. Ahmet I, Krawczyk M, Heller P, et al.: Beneficial effects of chronic pharmacological manipulation of beta-adrenoreceptor subtype signaling in rodent dilated ischemic cardiomyopathy. Circulation 2004, 110:1083–1090.

    Article  PubMed  CAS  Google Scholar 

  28. White HL, de Boer RA, Maqbool A, et al.: An evaluation of the beta-1 adrenergic receptor Arg389Gly polymorphism in individuals with heart failure: a MERIT-HF sub-study. Eur J Heart Fail 2003, 5:463–468.

    Article  PubMed  CAS  Google Scholar 

  29. Liggett SB, Wagoner LE, Craft LL, et al.: The Ile 164 beta2-adrenergic receptor polymorphism adversely affects the outcome of congestive heart failure. J Clin Invest 1998, 102:1534–1539.

    Article  PubMed  CAS  Google Scholar 

  30. Eisenach JH, Barnes SA, Pike TL, et al.: Arg16/Gly beta2-adrenergic receptor polymorphism alters the cardiac output response to isometric exercise. J Appl Physiol 2005, 99:1776–1781.

    Article  PubMed  CAS  Google Scholar 

  31. Dishy V, Sofowora GG, Xie HG, et al.: The effect of common polymorphisms of the beta2-adrenergic receptor on agonist-mediated vascular desensitization. N Engl J Med 2001, 345:1030–1035.

    Article  PubMed  CAS  Google Scholar 

  32. Garovic VD, Joyner MJ, Dietz NM, et al.: Beta(2)-adrenergic receptor polymorphism and nitric oxide-dependent forearm blood flow responses to isoproterenol in humans. J Physiol 2003, 546:583–589.

    Article  PubMed  CAS  Google Scholar 

  33. Cockcroft JR, Gazis AG, Cross DJ, et al.: Beta(2)-adrenoceptor polymorphism determines vascular reactivity in humans. Hypertension 2000, 36:371–375.

    PubMed  CAS  Google Scholar 

  34. Snyder EM, Beck KC, Dietz NM, et al.: Arg16Gly polymorphism of the ta2-adrenergic receptor is associated with differences in cardiovascular function at rest and during exercise in humans. J Physiol 2006, 571:121–130.

    Google Scholar 

  35. Snyder EM, Hulsebus ML, Turner ST, et al.: Genotype related differences in beta2 adrenergic receptor density and cardiac function. Med Sci Sports Exerc 2006, 38:882–886.

    Article  PubMed  CAS  Google Scholar 

  36. Snyder EM, Turner ST, Joyner MJ, et al.: The Arg16Gly polymorphism of the ta2-adrenergic receptor and the natriuretic response to rapid saline infusion in humans. J Physiol 2006, 574:947–954.

    Google Scholar 

  37. Shin J, Lobmeyer MT, Gong Y, et al.: Relation of beta(2)-adrenoceptor haplotype to risk of death and heart transplantation in patients with heart failure. Am J Cardiol 2007, 99:250–255.

    Article  PubMed  CAS  Google Scholar 

  38. Wolk R, Snyder EM, Somers VK, et al.: Arginine 16 glycine beta2-adrenoceptor polymorphism and cardiovascular structure and function in patients with heart failure. J Am Soc Echocardiogr 2007, 20:290–297.

    Article  PubMed  Google Scholar 

  39. Snyder EM, Turner ST, Johnson BD: ta2-Adrenergic receptor genotype and pulmonary function in patients with heart failure. Chest 2006, 130:1527–1534.

    Google Scholar 

  40. Agostoni P, Marenzi G, Lauri G, et al.: Sustained improvement in functional capacity after removal of body fluid with isolated ultrafiltration in chronic insufficiency: failure of furosemide to provide the same result. Am J Med 1994, 96:191–199.

    Article  PubMed  CAS  Google Scholar 

  41. Snyder EM, Beck KC, Turner ST, et al.: Genetic variation of the ta2 adrenergic receptor is associated with differences in lung fluid accumulation in humans. J Appl Physiol 2007, 102:2172–2178.

    Google Scholar 

  42. Kammerer S, Braun A, Arnold N, et al.: The human bradykinin B2 receptor gene: full length cDNA, genomic organization and identification of the regulatory region. Biochem Biophys Res Commun 1995, 211:226–233.

    Article  PubMed  CAS  Google Scholar 

  43. Olson TP, Snyder EM, Frantz RP, et al.: Repeat length polymorphism of the serotonin transporter gene influences pulmonary artery pressure in heart failure. Am Heart J 2007, 153:426–432.

    Article  PubMed  CAS  Google Scholar 

  44. Pretorius MM, Gainer JV, Van Guilder GP, et al.: The bradykinin type 2 receptor BE1 polymorphism and ethnicity influence systolic blood pressure and vascular resistance. Clin Pharmacol Ther 2007, [Epub ahead of print].

  45. Olson TP, Snyder EM, Frantz RP, et al.: Gene variant of the bradykinin B2 receptor influences pulmonary arterial pressures in heart failure patients. J Card Fail 2006, 12:S44.

    Article  Google Scholar 

  46. Lanfear DE, Stolker JM, Marsh S, et al.: Genetic variation in the B-type natiuretic peptide pathway affects BNP levels. Cardiovasc Drugs Ther 2007, 21:55–62.

    Article  PubMed  CAS  Google Scholar 

  47. Pitzalis MV, Sarzani R, Dessi-Fulgheri P, et al.: Allelic variants of natriuretic peptide receptor genes are associated with family history of hypertension and cardiovascular phenotype. J Hypertens 2003, 21:1491–1496.

    Article  PubMed  CAS  Google Scholar 

  48. McNamara DM, Holubkov R, Postava L, et al.: Pharmacogenetic interactions between angiotensin-converting enzyme inhibitor therapy and the angiotensin-converting enzyme deletion polymorphism in patients with congestive heart failure. J Am Coll Cardiol 2004, 44:2019–2026.

    Article  PubMed  CAS  Google Scholar 

  49. de Groote P, Helbecque N, Lamblin N, et al.: Beta-adrenergic receptor blockade and the angiotensin-converting enzyme deletion polymorphism in patients with chronic heart failure. Eur J Heart Fail 2004, 6:17–21.

    Article  PubMed  CAS  Google Scholar 

  50. Lanfear DE, Jones PG, Marsh S, et al.: Beta2-adrenergic receptor genotype and survival among patients receiving beta-blocker therapy after an acute coronary syndrome. JAMA 2005, 294:1526–1533.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric M. Snyder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snyder, E.M., Olson, T.P. & Johnson, B.D. Genetics and pharmacogenetics in heart failure. Curr Heart Fail Rep 4, 139–144 (2007). https://doi.org/10.1007/s11897-007-0032-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-007-0032-3

Keywords

Navigation