Skip to main content

Advertisement

Log in

Cardiorespiratory Fitness and Cardiovascular Disease Prevention: an Update

  • Coronary Heart Disease (S. Virani and S. Naderi, Section Editors)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Cardiovascular diseases account for nearly one third of all deaths globally. Improving exercise capacity and cardiorespiratory fitness (CRF) has been an important target to reduce cardiovascular events. In addition, the American Heart Association defined decreased physical activity as the fourth risk factor for coronary artery disease. Multiple large cohort studies have evaluated the impact of CRF on outcomes. In this review, we will discuss the role of CRF in reducing cardiovascular morbidity and mortality.

Recent Findings

Recent data suggest that CRF has an important role in reducing not only cardiovascular and all-cause mortality, but also incident myocardial infarction, hypertension, diabetes, atrial fibrillation, heart failure, and stroke. Most recently, its role in cancer prevention started to emerge. CRF protective effects have also been seen in patients with prior comorbidities like prior coronary artery disease, heart failure, depression, end-stage renal disease, and stroke.

Summary

The prognostic value of CRF has been demonstrated in various patient populations and cardiovascular conditions. Higher CRF is associated with improved survival and decreased incidence of cardiovascular diseases (CVD) and other comorbidities including hypertension, diabetes, heart failure, and atrial fibrillation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, et al. Heart disease and stroke dtatistics-2017 Update: a report from the American Heart Association. Circulation. 2017;135:e146–603.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Roth GA, Johnson C, Abajobir A, Abd-Allah F, Abera SF, Abyu G, et al. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am Coll Cardiol. 2017;70(1):1–25. https://doi.org/10.1016/j.jacc.2017.04.052.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Yoon SS, Dillon CF, Illoh K, Carroll M. Trends in the prevalence of coronary heart disease in the U.S.: National Health and Nutrition Examination Survey, 2001-2012. Am J Prev Med. 2016;51(4):437–45. https://doi.org/10.1016/j.amepre.2016.02.023.

    Article  PubMed  Google Scholar 

  4. Kaminsky LA, Arena R, Beckie TM, Brubaker PH, Church TS, Forman DE, et al. The importance of cardiorespiratory fitness in the United States: the need for a national registry: a policy statement from the American Heart Association. Circulation. 2013;127(5):652–62. https://doi.org/10.1161/CIR.0b013e31827ee100.

    Article  PubMed  Google Scholar 

  5. Fletcher GF, Ades PA, Kligfield P, Arena R, Balady GJ, Bittner VA, et al. Exercise standards for testing and training a scientific statement from the American Heart Association. Circulation. 2013;128(8):873–934. https://doi.org/10.1161/CIR.0b013e31829b5b44.

    Article  PubMed  Google Scholar 

  6. Barlow PA, Otahal P, Schultz MG, Shing CM, Sharman JE. Low exercise blood pressure and risk of cardiovascular events and all-cause mortality: systematic review and meta-analysis. Atherosclerosis. 2014;237(1):13–22. https://doi.org/10.1016/j.atherosclerosis.2014.08.029.

    Article  CAS  PubMed  Google Scholar 

  7. Khan MN, Pothier CE, Lauer MS. Chronotropic incompetence as a predictor of death among patients with normal electrograms taking beta blockers (metoprolol or atenolol). Am J Cardiol. 2005;96(9):1328–33. https://doi.org/10.1016/j.amjcard.2005.06.082.

    Article  CAS  PubMed  Google Scholar 

  8. Lee DC, Sui X, Artero EG, Lee IM, Church TS, McAuley PA, et al. Long-term effects of changes in cardiorespiratory fitness and body mass index on all-cause and cardiovascular disease mortality in men: the Aerobics Center Longitudinal Study. Circulation. 2011;124(23):2483–90. https://doi.org/10.1161/CIRCULATIONAHA.111.038422.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Laukkanen JA, Lakka TA, Rauramaa R, Kuhanen R, Venalainen JM, Salonen R, et al. Cardiovascular fitness as a predictor of mortality in men. Arch Intern Med. 2001;161(6):825–31. https://doi.org/10.1001/archinte.161.6.825.

    Article  CAS  PubMed  Google Scholar 

  10. Berry JD, Willis B, Gupta S, Barlow CE, Lakoski SG, Khera A, et al. Lifetime risks for cardiovascular disease mortality by cardiorespiratory fitness levels measured at ages 45, 55, and 65 years in men. The Cooper Center Longitudinal Study. J Am Coll Cardiol. 2011;57(15):1604–10. https://doi.org/10.1016/j.jacc.2010.10.056.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Brinker SK, Pandey A, Ayers CR, Barlow CE, DeFina LF, Willis BL, et al. Association of cardiorespiratory fitness with left ventricular remodeling and diastolic function: the Cooper Center Longitudinal Study. JACC Heart Fail. 2014;2(3):238–46. https://doi.org/10.1016/j.jchf.2014.01.004.

    Article  PubMed  PubMed Central  Google Scholar 

  12. •• Kokkinos P, Myers J, Faselis C, Panagiotakos DB, Doumas M, Pittaras A, et al. Exercise capacity and mortality in older men: a 20-year follow-up study. Circulation. 2010;122:790–7. This study assessed the association between exercise capacity and all-cause mortality in 5314 male veterans who completed an exercise test at the Veterans Affairs Medical Centers. Exercise capacity is an independent predictor of all-cause mortality in older men. The relationship is inverse and graded, with most survival benefits achieved in those with an exercise capacity > 5 METs

    Article  PubMed  Google Scholar 

  13. Cremer PC, Wu Y, Ahmed HM, et al. Use of sex-specific clinical and exercise risk scores to identify patients at increased risk for all-cause mortality. JAMA Cardiology. 2017;2(1):15–22. https://doi.org/10.1001/jamacardio.2016.3720.

  14. Lauer MS, Francis GS, Okin PM, Pashkow FJ, Snader CE, Marwick TH. Impaired chronotropic response to exercise stress testing as a predictor of mortality. JAMA. 1999;281(6):524–9. https://doi.org/10.1001/jama.281.6.524.

    Article  CAS  PubMed  Google Scholar 

  15. Al-Mallah MHKS, Brawner CA, Whelton S, Blaha MJ. Rationale and design of the henry ford exercise testing project (the FIT project). Clin Cardiol. 2014;37(8):456–61. https://doi.org/10.1002/clc.22302.

    Article  PubMed  Google Scholar 

  16. Kim J, Al-Mallah M, Juraschek SP, Brawner C, Keteyian SJ, Nasir K, et al. The association of clinical indication for exercise stress testing with all-cause mortality: the FIT project. Arch Med Sci. 2016;12(2):303–9. https://doi.org/10.5114/aoms.2016.59255.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bruce RA, Kusumi F, Hosmer D. Maximal oxygen intake and nomographic assessment of functional aerobic impairment in cardiovascular disease. Am Heart J. 1973;85(4):546–62. https://doi.org/10.1016/0002-8703(73)90502-4.

    Article  CAS  PubMed  Google Scholar 

  18. •• Ahmed HM, Al-Mallah MH, McEvoy JW, Nasir K, Blumenthal RS, Jones SR, et al. Maximal exercise testing variables and 10-year survival: fitness risk score derivation from the FIT Project. Mayo Clinic Proceedings. 2015;90:346–55. The aim of this study is to derive a fitness risk score that can be used to predict 10-year survival. A “FIT Treadmill Score” was then derived and internally validated. The FIT Treadmill Score, calculated as [percentage of maximum predicted heart rate + 12 (metabolic equivalents of task) – 4 (age) + 43 if female], ranged from − 200 to 200 and is highly predictive of 10-year survival (Harrell C statistic, 0.811).

    Article  PubMed  Google Scholar 

  19. McAuley PA, Blaha MJ, Keteyian SJ, Brawner CA, Al Rifai M, Dardari ZA, et al. Fitness, fatness, and mortality: The FIT (Henry Ford Exercise Testing) project. Am J Med. 2016;129:960–965. e1.

    Article  PubMed  Google Scholar 

  20. Kokkinos P, Myers J, Kokkinos JP, Pittaras A, Narayan P, Manolis A, et al. Exercise capacity and mortality in black and white men. Circulation. 2008;117(5):614–22. https://doi.org/10.1161/CIRCULATIONAHA.107.734764.

    Article  PubMed  Google Scholar 

  21. Blair SN, Jackson AS. Physical fitness and activity as separate heart disease risk factors: a meta-analysis. Med Sci Sports Exerc. 2001;33(5):762–4.

    Article  CAS  PubMed  Google Scholar 

  22. Kodama S, Saito K, Tanaka S, Maki M, Yachi Y, Asumi M, et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis. JAMA. 2009;301(19):2024–35. https://doi.org/10.1001/jama.2009.681.

    Article  CAS  PubMed  Google Scholar 

  23. Ehrman JK, Brawner CA, Al-Mallah MH, Qureshi WT, Blaha MJ, Keteyian SJ. Cardiorespiratory fitness change and mortality risk among black and white patients: Henry Ford Exercise Testing (FIT) project. Am J Med. 2017;130(10):1177–83. https://doi.org/10.1016/j.amjmed.2017.02.036.

    Article  PubMed  Google Scholar 

  24. Aladin AI, Whelton SP, Al-Mallah MH, Blaha MJ, Keteyian SJ, Juraschek SP, et al. Relation of resting heart rate to risk for all-cause mortality by gender after considering exercise capacity (the Henry Ford exercise testing project). Am J Cardiol. 2014;114(11):1701–6. https://doi.org/10.1016/j.amjcard.2014.08.042.

    Article  PubMed  Google Scholar 

  25. O'Neal WT, Qureshi WT, Blaha MJ, Keteyian SJ, Brawner CA, Al-Mallah MH. Systolic blood pressure response during exercise stress testing: the Henry Ford ExercIse Testing (FIT) project. J Am Heart Assoc. 2015;4(5):e002050. https://doi.org/10.1161/JAHA.115.002050.

    Article  PubMed  PubMed Central  Google Scholar 

  26. O'Neal WT, Qureshi WT, Blaha MJ, Dardari ZA, Ehrman JK, Brawner CA, et al. Chronotropic incompetence and risk of atrial fibrillation: the Henry Ford ExercIse Testing (FIT) project. JACC Clin Electrophysiol. 2016;2(6):645–52. https://doi.org/10.1016/j.jacep.2016.03.013.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, Das SR, de Ferranti S, Després J-P, Fullerton HJ, Howard VJ, Huffman MD, Isasi CR, Jiménez MC, Judd SE, Kissela BM, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, Magid DJ, McGuire DK, Mohler ER, Moy CS, Muntner P, Mussolino ME, Nasir K, Neumar RW, Nichol G, Palaniappan L, Pandey DK, Reeves MJ, Rodriguez CJ, Rosamond W, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Woo D, Yeh RW and Turner MB. Heart disease and stroke statistics—2016 update. A Report From the American Heart Association. 2015.

  28. Lakatta EG, Chantler PD. Payments for debts associated with exercise can become higher as we age and limit exercise capacity. J Am Coll Cardiol. 2006;47(5):1058–9. https://doi.org/10.1016/j.jacc.2005.11.039.

    Article  PubMed  Google Scholar 

  29. Khan H, Jaffar N, Rauramaa R, Kurl S, Savonen K, Laukkanen JA. Cardiorespiratory fitness and nonfatalcardiovascular events: a population-based follow-up study. Am Heart J. 2017;184:55–61. https://doi.org/10.1016/j.ahj.2016.10.019.

    Article  PubMed  Google Scholar 

  30. Gander JC, Sui X, Hébert JR, Hazlett LJ, Cai B, Lavie CJ, et al. Association of cardiorespiratory fitness with coronary heart disease in asymptomatic men. Mayo Clinic Proceedings. 90:1372–9.

  31. Ceaser TG, Fitzhugh EC, Thompson DL, Bassett DR Jr. Association of physical activity, fitness, and race: NHANES 1999-2004. Med Sci Sports Exerc. 2013;45(2):286–93. https://doi.org/10.1249/MSS.0b013e318271689e.

    Article  PubMed  Google Scholar 

  32. Ahmed AM, Hersi A, Mashhoud W, Arafah MR, Abreu PC, Al Rowaily MA, et al. Cardiovascular risk factors burden in Saudi Arabia: the Africa Middle East Cardiovascular Epidemiological (ACE) study. J Saudi Heart Assoc. 2017;29(4):235–43. https://doi.org/10.1016/j.jsha.2017.03.004.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Juraschek SP, Blaha MJ, Whelton SP, Blumenthal R, Jones SR, Keteyian SJ, et al. Physical fitness and hypertension in a population at risk for cardiovascular disease: the Henry Ford ExercIse Testing (FIT) project. J Am Heart Assoc. 2014;3(6):e001268. https://doi.org/10.1161/JAHA.114.001268.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Cowie CC, Rust KF, Byrd-Holt DD, Gregg EW, Ford ES, Geiss LS, et al. Prevalence of diabetes and high risk for diabetes using A1C criteria in the U.S. population in 1988-2006. Diabetes Care. 2010;33(3):562–8. https://doi.org/10.2337/dc09-1524.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract. 2010;87(1):4–14. https://doi.org/10.1016/j.diabres.2009.10.007.

    Article  CAS  PubMed  Google Scholar 

  36. Messina J, Campbell S, Morris R, Eyles E, Sanders C. A narrative systematic review of factors affecting diabetes prevention in primary care settings. PLoS One. 2017;12(5):e0177699. https://doi.org/10.1371/journal.pone.0177699.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Krause MP, Hallage T, Gama MP, Goss FL, Robertson R, da Silva SG. Association of adiposity, cardiorespiratory fitness and exercise practice with the prevalence of type 2 diabetes in Brazilian elderly women. Int J Med Sci. 2007;4(5):288–92.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Williams PT. Changes in vigorous physical activity and incident diabetes in male runners. Diabetes Care. 2007;30(11):2838–42. https://doi.org/10.2337/dc07-1189.

    Article  PubMed  Google Scholar 

  39. Juraschek SP, Blaha MJ, Al-Mallah MH. Response to comment on Juraschek et al. cardiorespiratory fitness and incident diabetes: the FIT (Henry Ford ExercIse Testing) project. Diabetes Care 2015; 38: 1075–1081. Diabetes Care. 2015;38(11):e194–5. https://doi.org/10.2337/dci15-0007.

    Article  PubMed  Google Scholar 

  40. Juraschek SP, Blaha MJ, Blumenthal RS, Brawner C, Qureshi W, Keteyian SJ, et al. Cardiorespiratory fitness and incident diabetes: the FIT (Henry Ford ExercIse Testing) project. Diabetes Care. 2015;38(6):1075–81. https://doi.org/10.2337/dc14-2714.

    Article  PubMed  Google Scholar 

  41. Zaccardi F, O'Donovan G, Webb DR, Yates T, Kurl S, Khunti K, et al. Cardiorespiratory fitness and risk of type 2 diabetes mellitus: a 23-year cohort study and a meta-analysis of prospective studies. Atherosclerosis. 2015;243(1):131–7. https://doi.org/10.1016/j.atherosclerosis.2015.09.016.

    Article  CAS  PubMed  Google Scholar 

  42. Benjamin EJ, Levy D, Vaziri SM, D'Agostino RB, Belanger AJ, Wolf PA. Independent risk factors for atrial fibrillation in a population-based cohort. The Framingham Heart Study. JAMA. 1994;271(11):840–4. https://doi.org/10.1001/jama.1994.03510350050036.

    Article  CAS  PubMed  Google Scholar 

  43. Go AS, Hylek EM, Phillips KA, Chang Y, Henault LE, Selby JV, et al. Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the AnTicoagulation and Risk Factors in Atrial Fibrillation (ATRIA) study. JAMA. 2001;285(18):2370–5. https://doi.org/10.1001/jama.285.18.2370.

    Article  CAS  PubMed  Google Scholar 

  44. •• Qureshi WT, Alirhayim Z, Blaha MJ, Juraschek SP, Keteyian SJ, Brawner CA, et al. Cardiorespiratory fitness and risk of incident atrial fibrillation: results from the Henry Ford Exercise Testing (FIT) Project. Circulation. 2015;131:1827–34. The aim of this analysis was to investigate the association between CRF and incident AF in a large, multi-racial cohort that underwent graded exercise treadmill testing. A total of 64,561 adults without AF underwent exercise treadmill testing at a tertiary care center were included. There is a graded, inverse relationship between cardiorespiratory fitness and incident AF, especially among obese patients.

    Article  PubMed  Google Scholar 

  45. Khan H, Kella D, Rauramaa R, Savonen K, Lloyd MS, Laukkanen JA. Cardiorespiratory fitness and atrial fibrillation: a population-based follow-up study. Heart Rhythm. 12:1424–30.

  46. Berry JD, Pandey A, Gao A, Leonard D, Farzaneh-Far R, Ayers C, et al. Physical fitness and risk for heart failure and coronary artery disease. Circ Heart Fail. 2013;6(4):627–34. https://doi.org/10.1161/CIRCHEARTFAILURE.112.000054.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Pandey A, Parashar A, Kumbhani DJ, Agarwal S, Garg J, Kitzman D, et al. Exercise training in patients with heart failure and preserved ejection fraction: meta-analysis of randomized control trials. Circ Heart Fail. 2015;8(1):33–40. https://doi.org/10.1161/CIRCHEARTFAILURE.114.001615.

    Article  PubMed  Google Scholar 

  48. Khan H, Kunutsor S, Rauramaa R, Savonen K, Kalogeropoulos AP, Georgiopoulou VV, et al. Cardiorespiratory fitness and risk of heart failure: a population-based follow-up study. Eur J Heart Fail. 2014;16(2):180–8. https://doi.org/10.1111/ejhf.37.

    Article  CAS  PubMed  Google Scholar 

  49. •• Kupsky DF, Ahmed AM, Sakr S, Qureshi WT, Brawner CA, Blaha MJ, et al. Cardiorespiratory fitness and incident heart failure: The Henry Ford ExercIse Testing (FIT) Project. Am Heart J. 2017;185:35–42. The purpose of this study was to determine the relationship between CRF and incident HF. Sixty-six thousand three hundred twenty-nine patients (53.8% men, mean age 55 years) free of HF who underwent exercise treadmill stress testing were included. Higher levels of fitness are associated with a lower incidence of HF independent of HF risk factors.

    Article  PubMed  Google Scholar 

  50. Koo P, Gjelsvik A, Choudhary G, Wu WC, Wang W, McCool FD, et al. Prospective association of physical activity and heart failure hospitalizations among Black adults with normal ejection fraction: the Jackson Heart Study. J Am Heart Assoc. 2017;6(9):e006107. https://doi.org/10.1161/JAHA.117.006107.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Farrell SW, Finley CE, Radford NB, Haskell WL. Cardiorespiratory fitness, body mass index, and heart failure mortality in men. Circulation Heart Failure. 2013;6(5):898–905. https://doi.org/10.1161/CIRCHEARTFAILURE.112.000088.

    Article  PubMed  Google Scholar 

  52. Centers for Disease Control and Prevention. Prevalence of stroke—United States, 2006-2010. MMWR Morb Mortal Wkly Rep. 2012;61:379–82.

    Google Scholar 

  53. Hooker SP, Sui X, Colabianchi N, Vena J, Laditka J, LaMonte MJ, et al. Cardiorespiratory fitness as a predictor of fatal and nonfatal stroke in asymptomatic women and men. Stroke. 2008;39(11):2950–7. https://doi.org/10.1161/STROKEAHA.107.495275.

    Article  PubMed  Google Scholar 

  54. Lee CD, Blair SN. Cardiorespiratory fitness and stroke mortality in men. Med Sci Sports Exerc. 2002;34(4):592–5.

    PubMed  Google Scholar 

  55. Sieverdes JC, Sui X, Lee DC, Lee IM, Hooker SP, Blair SN. Independent and joint associations of physical activity and fitness on stroke in men. Phys Sportsmed. 2011;39(2):119–26. https://doi.org/10.3810/psm.2011.05.1902.

    Article  PubMed  Google Scholar 

  56. Boss HM, Van Schaik SM, Witkamp TD, Geerlings MI, Weinstein HC, Van den Berg-Vos RM. Cardiorespiratory fitness, cognition and brain structure after TIA or minor ischemic stroke. Int J Stroke. 2017;12(7):724–31. https://doi.org/10.1177/1747493017702666.

    Article  PubMed  Google Scholar 

  57. Al-Mallah MH, Juraschek SP, Whelton S, Dardari ZA, Ehrman JK, Michos ED, et al. Sex differences in cardiorespiratory fitness and all-cause mortality: the Henry Ford ExercIse Testing (FIT) project. Mayo Clin Proc. 2016;91(6):755–62. https://doi.org/10.1016/j.mayocp.2016.04.002.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Al-Mallah MH, Qureshi WT, Keteyian SJ, Brawner CA, Alam M, Dardari Z, et al. Racial differences in the prognostic value of cardiorespiratory fitness (results from the Henry Ford Exercise Testing project). Am J Cardiol. 2016;117(9):1449–54. https://doi.org/10.1016/j.amjcard.2016.02.013.

    Article  PubMed  Google Scholar 

  59. Blaha MJ, Dardari ZA, Blumenthal RS, Martin SS, Nasir K, Al-Mallah MH. The new “intermediate risk” group: a comparative analysis of the new 2013 ACC/AHA risk assessment guidelines versus prior guidelines in men. Atherosclerosis. 2014;237(1):1–4. https://doi.org/10.1016/j.atherosclerosis.2014.08.024.

    Article  CAS  PubMed  Google Scholar 

  60. Hung RK, Al-Mallah MH, McEvoy JW, Whelton SP, Blumenthal RS, Nasir K, et al. Prognostic value of exercise capacity in patients with coronary artery disease: the FIT (Henry Ford ExercIse Testing) project. Mayo Clin Proc. 2014;89(12):1644–54. https://doi.org/10.1016/j.mayocp.2014.07.011.

    Article  PubMed  Google Scholar 

  61. Hung RK, Al-Mallah MH, Whelton SP, Michos ED, Blumenthal RS, Ehrman JK, et al. Effect of beta-blocker therapy, maximal heart rate, and exercise capacity during stress testing on long-term survival (from the Henry Ford Exercise Testing project). Am J Cardiol. 2016;118(11):1751–7. https://doi.org/10.1016/j.amjcard.2016.08.060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hicks A, Russell S, Keteyian S, Brawner C, Al-Mallah M, Blaha M. Increased cardiorespiratory fitness on exercise stress testing predicts long-term survival in patients with HFpEF. J Heart Lung Transplant. 2015;34(4):S69–70. https://doi.org/10.1016/j.healun.2015.01.178.

    Article  Google Scholar 

  63. Adesiyun T, Zhao D, Blaha MJ, Brawner CA, Keteyian SJ, Ehrman JK, et al. Exercise parameters and risk of coronary artery disease and mortality among patients who use pulmonary medications: The FIT project. Am J Med. 2016;129:446. e1–4.

    Article  Google Scholar 

  64. Same RV, Al Rifai M, Feldman DI, Billups KL, Brawner CA, Dardari ZA, et al. Prognostic value of exercise capacity among men undergoing pharmacologic treatment for erectile dysfunction: the FIT project. Clin Cardiol. 2017;40(11):1049–54. https://doi.org/10.1002/clc.22768.

    Article  PubMed  Google Scholar 

  65. Al Rifai M, Patel J, Hung RK, Nasir K, Keteyian SJ, Brawner CA, et al. Higher fitness is strongly protective in patients with family history of heart disease: The FIT project. Am J Med. 130:367–71.

  66. Stone NJ, Robinson JG, Lichtenstein AH, Bairey Merz CN, Blum CB, Eckel RH, et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014;129(25 suppl 2):S1–45. https://doi.org/10.1161/01.cir.0000437738.63853.7a.

    Article  PubMed  Google Scholar 

  67. Lee DS, Markwardt S, Goeres L, Lee CG, Eckstrom E, Williams C, et al. Statins and physical activity in older men: the osteoporotic fractures in men study. JAMA Intern Med. 2014;174(8):1263–70. https://doi.org/10.1001/jamainternmed.2014.2266.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Qureshi WT, Keteyian SJ, Brawner CA, Dardari Z, Blaha MJ, Al-Mallah MH. Impact of statin use on cardiorespiratory fitness in multi-racial men and women: the Henry Ford Exercise Testing (FIT) project. Int J Cardiol. 2015;197:76–7. https://doi.org/10.1016/j.ijcard.2015.06.047.

    Article  PubMed  Google Scholar 

  69. Hung RK, Al-Mallah MH, Qadi MA, Shaya GE, Blumenthal RS, Nasir K, et al. Cardiorespiratory fitness attenuates risk for major adverse cardiac events in hyperlipidemic men and women independent of statin therapy: the Henry Ford ExercIse Testing project. Am Heart J. 2015;170:390–399. e6.

    Article  PubMed  Google Scholar 

  70. Brawner CA, Al-Mallah MH, Ehrman JK, Qureshi WT, Blaha MJ, Keteyian SJ. Change in maximal exercise capacity is associated with survival in men and women. Mayo Clin Proc. 2017;92(3):383–90. https://doi.org/10.1016/j.mayocp.2016.12.016.

    Article  PubMed  Google Scholar 

  71. Alpaydin E. Introduction to machine learning: MIT press; 2014.

  72. Cleophas TJ. Machine learning in therapeutic research: the hard work of outlier detection in large data. Am J Ther. 2016;23(3):e837–43. https://doi.org/10.1097/MJT.0b013e31827ab4a0.

    Article  PubMed  Google Scholar 

  73. Marsland S. Machine learning: an algorithmic perspective: CRC press; 2015.

  74. Waljee AK, Higgins PD. Machine learning in medicine: a primer for physicians. Am J Gastroenterol. 2010;105(6):1224–6. https://doi.org/10.1038/ajg.2010.173.

    Article  PubMed  Google Scholar 

  75. Motwani M, Dey D, Berman DS, Germano G, Achenbach S, Al-Mallah MH, Andreini D, Budoff MJ, Cademartiri F, Callister TQ, Chang HJ, Chinnaiyan K, Chow BJ, Cury RC, Delago A, Gomez M, Gransar H, Hadamitzky M, Hausleiter J, Hindoyan N, Feuchtner G, Kaufmann PA, Kim YJ, Leipsic J, Lin FY, Maffei E, Marques H, Pontone G, Raff G, Rubinshtein R, Shaw LJ, Stehli J, Villines TC, Dunning A, Min JK and Slomka PJ. Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis. Eur Heart J. 2016.

  76. Al-Mallah MH, Elshawi R, Ahmed AM, Qureshi WT, Brawner CA, Blaha MJ, Ahmed HM, Ehrman JK, Keteyian SJ and Sakr S. Using machine learning to define the association between cardiorespiratory fitness and all-cause mortality (from the Henry Ford Exercise Testing project). Am J Cardiol.

  77. Alghamdi M, Al-Mallah M, Keteyian S, Brawner C, Ehrman J, Sakr S. Predicting diabetes mellitus using SMOTE and ensemble machine learning approach: the Henry Ford ExercIse Testing (FIT) project. PLoS One. 2017;12(7):e0179805. https://doi.org/10.1371/journal.pone.0179805.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Aladin AI, Al Rifai M, Rasool SH, Keteyian SJ, Brawner CA, Blumenthal RS, et al. Relation of resting heart rate to incident atrial fibrillation (from the Henry ford hospital exercise testing project). Am J Cardiol. 2017;119(2):262–7. https://doi.org/10.1016/j.amjcard.2016.09.047.

    Article  PubMed  Google Scholar 

  79. Aladin AI, Al Rifai M, Rasool SH, Keteyian SJ, Brawner CA, Michos ED, Blaha MJ, Al-Mallah MH and McEvoy JW. The association of resting heart rate and incident hypertension: the Henry Ford Hospital Exercise Testing (FIT) Project. Am J Hypertens. 2015:hpv095.

  80. O'Neal WT, Almahmoud MF, Soliman EZ. Resting heart rate and incident atrial fibrillation in the elderly. Pacing Clin Electrophysiol. 2015;38(5):591–7. https://doi.org/10.1111/pace.12591.

    Article  PubMed  Google Scholar 

  81. Brubaker PH, Kitzman DW. Chronotropic incompetence: causes, consequences, and management. Circulation. 2011;123(9):1010–20. https://doi.org/10.1161/CIRCULATIONAHA.110.940577.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Liu HJ, Guo J, Zhao QH, Wang L, Yang WL, He J, et al. Chronotropic incompetence and its relation to exercise intolerance in chronic obstructive pulmonary disease. Am J Med Sci. 2017;353(3):216–23. https://doi.org/10.1016/j.amjms.2016.12.015.

    Article  PubMed  Google Scholar 

  83. Holly TA, Abbott BG, Al-Mallah M, Calnon DA, Cohen MC, DiFilippo FP, et al. Single photon-emission computed tomography. J Nucl Cardiol. 2010;17(5):941–73. https://doi.org/10.1007/s12350-010-9246-y.

    Article  PubMed  Google Scholar 

  84. Xie JX, Winchester DE, Phillips LM, Hachamovitch R, Berman DS, Blankstein R, et al. The elusive role of myocardial perfusion imaging in stable ischemic heart disease: is ISCHEMIA the answer? J Nucl Cardiol. 2017;24(5):1610–8. https://doi.org/10.1007/s12350-017-0963-3.

    Article  PubMed  Google Scholar 

  85. Dowsley T, Al-Mallah M, Ananthasubramaniam K, Dwivedi G, McArdle B, Chow BJ. The role of noninvasive imaging in coronary artery disease detection, prognosis, and clinical decision making. Can J Cardiol. 2013;29(3):285–96. https://doi.org/10.1016/j.cjca.2012.10.022.

    Article  PubMed  Google Scholar 

  86. Ward RP, Al-Mallah MH, Grossman GB, Hansen CL, Hendel RC, Kerwin TC, et al. American Society of Nuclear Cardiology review of the ACCF/ASNC appropriateness criteria for single-photon emission computed tomography myocardial perfusion imaging (SPECT MPI). J Nucl Cardiol. 2007;14(6):e26–38. https://doi.org/10.1016/j.nuclcard.2007.10.001.

    Article  PubMed  Google Scholar 

  87. Blaha MJ, Whelton SP, Al Rifai M, Dardari ZA, Shaw LJ, Al-Mallah MH, et al. Rationale and design of the coronary artery calcium consortium: a multicenter cohort study. J Cardiovasc Comput Tomogr. 2017;11(1):54–61. https://doi.org/10.1016/j.jcct.2016.11.004.

    Article  PubMed  Google Scholar 

  88. Al-Mallah M, Alqaisi F, Arafeh A, Lakhdar R, Al-Tamsheh R, Ananthasubramaniam K. Long term favorable prognostic value of negative treadmill echocardiogram in the setting of abnormal treadmill electrocardiogram: a 95 month median duration follow-up study. J Am Soc Echocardiogr. 2008;21(9):1018–22. https://doi.org/10.1016/j.echo.2008.06.005.

    Article  PubMed  Google Scholar 

  89. Al-Mallah MH, Qureshi W, Lin FY, Achenbach S, Berman DS, Budoff MJ, et al. Does coronary CT angiography improve risk stratification over coronary calcium scoring in symptomatic patients with suspected coronary artery disease? Results from the prospective multicenter international CONFIRM registry. Eur Heart J Cardiovasc Imaging. 2014;15(3):267–74. https://doi.org/10.1093/ehjci/jet148.

    Article  PubMed  Google Scholar 

  90. Al-Mallah MH, Qureshi W, Pantelic M, Nour K. Long term prognostic value of coronary computed tomography angiography in suspected coronary artery disease: a 62 month median follow-up study. Int J Cardiol. 2014;176(3):1244–6. https://doi.org/10.1016/j.ijcard.2014.07.203.

    Article  PubMed  Google Scholar 

  91. Ahmed AM, Qureshi WT, O'Neal WT, Khalid F, Al-Mallah MH. Incremental prognostic value of SPECT-MPI in chronic kidney disease: a reclassification analysis. J Nucl Cardiol. 2017; https://doi.org/10.1007/s12350-016-0756-0.

  92. Heiwe S, Jacobson SH. Exercise training for adults with chronic kidney disease. Cochrane Database Syst Rev. 2011:CD003236.

  93. Al-Mallah MH, Hachamovitch R, Dorbala S, Di Carli MF. Incremental prognostic value of myocardial perfusion imaging in patients referred to stress single-photon emission computed tomography with renal dysfunction. Circ Cardiovasc Imaging. 2009;2(6):429–36. https://doi.org/10.1161/CIRCIMAGING.108.831164.

    Article  PubMed  Google Scholar 

  94. Al-Mallah MH, Sitek A, Moore SC, Di Carli M, Dorbala S. Assessment of myocardial perfusion and function with PET and PET/CT. J Nucl Cardiol. 2010;17(3):498–513. https://doi.org/10.1007/s12350-010-9223-5.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Al Badarin F, Aljizeeri A, Almasoudi F, Al-Mallah MH. Assessment of myocardial blood flow and coronary flow reserve with positron emission tomography in ischemic heart disease: current state and future directions. Heart Fail Rev. 2017;22(4):441–53. https://doi.org/10.1007/s10741-017-9625-4.

    Article  PubMed  Google Scholar 

  96. Aljizeeri A, Sulaiman A, Alhulaimi N, Alsaileek A, Al-Mallah MH. Cardiac magnetic resonance imaging in heart failure: where the alphabet begins. Heart Fail Rev. 2017;22(4):385–99. https://doi.org/10.1007/s10741-017-9609-4.

    Article  PubMed  Google Scholar 

  97. Al-Mallah MH, Shareef MN. The role of cardiac magnetic resonance imaging in the assessment of non-ischemic cardiomyopathy. Heart Fail Rev. 2011;16(4):369–80. https://doi.org/10.1007/s10741-010-9221-3.

    Article  PubMed  Google Scholar 

  98. Jamiel A, Ebid M, Ahmed AM, Ahmed D, Al-Mallah MH. The role of myocardial viability in contemporary cardiac practice. Heart Fail Rev. 2017;22(4):401–13. https://doi.org/10.1007/s10741-017-9626-3.

    Article  PubMed  Google Scholar 

  99. Feldman DI, Al-Mallah MH, Keteyian SJ, Brawner CA, Feldman T, Blumenthal RS, et al. No evidence of an upper threshold for mortality benefit at high levels of cardiorespiratory fitness. J Am Coll Cardiol. 2015;65(6):629–30. https://doi.org/10.1016/j.jacc.2014.11.030.

    Article  PubMed  Google Scholar 

  100. Merghani A, Maestrini V, Rosmini S, Cox AT, Dhutia H, Bastiaenan R, et al. Prevalence of subclinical coronary artery disease in masters endurance athletes with a low atherosclerotic risk profile. Circulation. 2017;136(2):126–37. https://doi.org/10.1161/CIRCULATIONAHA.116.026964.

    Article  CAS  PubMed  Google Scholar 

  101. Al-Mallah MH, Aljizeeri A, Alharthi M, Alsaileek A. Routine low-radiation-dose coronary computed tomography angiography. Eur Heart J Suppl. 2014;16(suppl B):B12–6. https://doi.org/10.1093/eurheartj/suu024.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mouaz H. Al-Mallah.

Ethics declarations

Conflict of Interest

Mouaz H. Al-Mallah, Sherif Sakr, and Ada Al-Qunaibet declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Coronary Heart Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Mallah, M.H., Sakr, S. & Al-Qunaibet, A. Cardiorespiratory Fitness and Cardiovascular Disease Prevention: an Update. Curr Atheroscler Rep 20, 1 (2018). https://doi.org/10.1007/s11883-018-0711-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11883-018-0711-4

Keywords

Navigation