Skip to main content
Log in

Data-Science Analysis of the Macro-scale Features Governing the Corrosion to Crack Transition in AA7050-T7451

  • Data-driven Material Investigations: Understanding Fatigue Behavior
  • Published:
JOM Aims and scope Submit manuscript

Abstract

This study applies data science approaches (random forest and logistic regression) to determine the extent to which macro-scale corrosion damage features govern the crack formation behavior in AA7050-T7451. Each corrosion morphology has a set of corresponding predictor variables (pit depth, volume, area, diameter, pit density, total fissure length, surface roughness metrics, etc.) describing the shape of the corrosion damage. The values of the predictor variables are obtained from white light interferometry, x-ray tomography, and scanning electron microscope imaging of the corrosion damage. A permutation test is employed to assess the significance of the logistic and random forest model predictions. Results indicate minimal relationship between the macro-scale corrosion feature predictor variables and fatigue crack initiation. These findings suggest that the macro-scale corrosion features and their interactions do not solely govern the crack formation behavior. While these results do not imply that the macro-features have no impact, they do suggest that additional parameters must be considered to rigorously inform the crack formation location.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. T. Dursun and C. Soutis, Mater. Des. 56, 862 (2014).

    Article  Google Scholar 

  2. G.A. Shoales, S.A. Fawaz, and M.R. Walters, in ICAF 2009, Bridging the Gap Between Theory and Operational Practice, ed. M.J. Bos (Dordrecht, Netherlands: Springer, 2009), p. 187. https://doi.org/10.1007/978-90-481-2746-7_11

  3. S.A. Barter, L. Molent, and R.J.H. Wanhill, Int. J. Fatigue 41, 11 (2012).

    Article  Google Scholar 

  4. S. Mahadevan and P. Shi, Prog. Struct. Eng. Mater. 3, 188 (2001).

    Article  Google Scholar 

  5. E. Rezig, P.E. Irving, and M.J. Robinson, Procedia Eng. 2, 387 (2010).

    Article  Google Scholar 

  6. N.E.C. Co and J.T. Burns, Int. J. Fatigue 103, 234 (2017).

    Article  Google Scholar 

  7. J.T. Burns, S. Kim, and R.P. Gangloff, Corros. Sci. 52, 498 (2010).

    Article  Google Scholar 

  8. J.T. Burns, J.M. Larsen, and R.P. Gangloff, Fatigue Fract. Eng. Mater. Struct. 34, 745 (2011).

    Article  Google Scholar 

  9. S. Kim, J.T. Burns, and R.P. Gangloff, Eng. Fract. Mech. 76, 651 (2009).

    Article  Google Scholar 

  10. A. Turnbull, in Annual Conference of the Australasian Corrosion Association 2012 (Melbourne, Victoria, Australia: Australian Corrosion Association, 2012), p. 139

  11. S. Zhou and A. Turnbull, Fatigue Fract. Eng. Mater. Struct. 22, 1083 (1999).

    Article  Google Scholar 

  12. A. Turnbull, D.A. Horner, and B.J. Connolly, Eng. Fract. Mech. 76, 633 (2009).

    Article  Google Scholar 

  13. J.T. Burns, J.M. Larsen, and R.P. Gangloff, Int. J. Fatigue 42, 104 (2012).

    Article  Google Scholar 

  14. N.E.C. Co and J.T. Burns, Corrosion 72, 1215 (2016).

    Article  Google Scholar 

  15. D. Buxton, R. Cottis, P. Scarf, and P. McIntyre, in Proceedings of the International Conference on Corrosion–Deformation Interaction, Fontainebleau, France, ed. T Magnin and J.M. Gras (Les Ulis: Ed. De Physique, 1993), pp. 901–913.

  16. J.J. Medved, M. Breton, and P.E. Irving, Int. J. Fatigue 26, 71 (2004).

    Article  Google Scholar 

  17. C. Dichev and D. Dicheva, Procedia Comput. Sci. 108, 2151 (2017).

    Article  Google Scholar 

  18. C. Kamath and Y.J. Fan, in Informatics for Materials Science and Engineering, ed. K. Rajan (Oxford, UK: Elsevier, 2013), pp. 17–36. https://doi.org/10.1016/B978-0-12-394399-6.00002-3.

  19. J.R. Brence and D.E. Brown, Comput. Ind. Eng. 43, 821 (2002).

    Article  Google Scholar 

  20. P. Khullar, J.V. Badilla, M.L.C. Lim, S.C. Hahn, D.W. Ellis, and R.G. Kelly, in ECS Meeting Abstracts, vol. MA2015-02 (Pennington, NJ: The Electrochemical Society, 2015), p. 689.

  21. D.E. Brown, Clin. Lab. Med. 28, 9 (2008).

    Article  Google Scholar 

  22. L. Breiman, Mach. Learn. 45, 5 (2001).

    Article  Google Scholar 

  23. A. Liaw, “randomForest” https://www.rdocumentation.org/packages/randomForest/versions/4.6-12. Accessed 1 Dec 2017.

  24. L. van der Maaten and G. Hinton, J. Mach. Learn. Res. 9, 2579 (2008).

    Google Scholar 

Download references

Acknowledgements

Funding was provided by Office of Naval Research (US) (Grant Nos. N00014-17-1-2033, N00014-14-1-0012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noelle Easter C. Co.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Co, N.E.C., Brown, D.E. & Burns, J.T. Data-Science Analysis of the Macro-scale Features Governing the Corrosion to Crack Transition in AA7050-T7451. JOM 70, 1168–1174 (2018). https://doi.org/10.1007/s11837-018-2864-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-2864-6

Navigation