Skip to main content
Log in

Measuring the mechanical properties of Pb-free solder and Sn-based intermetallics by nanoindentation

  • Research Summary
  • Lead-Free Solder
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The technique of nanoindentation coupled with an atomic force microscope has been used to measure mechanical properties of Cu-Sn and Ag-Sn intermetallics at length scales similar to those observed in real solder joints. This article describes the experiment and discusses the results in terms of the effect of intermetallics on the reliability of microelectronic packages. The results show that, despite their high hardness, the intermetallics deform plastically without cracking at the small loads and length scales of nanoindentation testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.W. Henderson et al., “Ag3Sn Plate Formation in the Solidification of Near Ternary Eutectic Sn-Ag-Cu Alloys,” J. Mater. Res., 17 (2002), p. 2775.

    CAS  Google Scholar 

  2. T.Y. Lee et al., “Morphology, Kinetics, and Thermodynamics of Solid-State Aging of Eutectic SnPb and Pb-free Solders (Sn-3.5Ag, Sn-3.8Ag-0.7Cu and Sn-0.7Cu) on Cu,” J. Mater. Res., 17 (2002), p. 291.

    CAS  Google Scholar 

  3. K.S. Kim, S.H. Huh, and K. Suganuma, “Effects of Cooling Speed on Microstructure and Tensile Properties of Sn-Ag-Cu Alloys,” Mater. Sci. Eng. A, 333 (2002), p. 106.

    Article  Google Scholar 

  4. S.A. Langer, E.R. Fuller, Jr., and W.C. Carter, “OOF: An Image-Based Finite-Element Analysis of Material Microstructures,” Comput. Sci. Eng., 3 (2001), p. 15.

    Article  Google Scholar 

  5. N. Chawla et al., “Microstructure-Based Simulation of Thermomechanical Behavior of Composite Materials by Object Oriented (OOF) Finite Element Analysis,” Submitted to Materials Characterization (2003).

  6. D.T. Vonk et al., “Object Oriented Finite Element Analysis of Composite Microstructures” (Paper presented to OOF Workshop, NIST, Gaithersburg, MD, 21–22 June 2001).

  7. J.L. Marshall, L. Ann Foster, and J.A. Sees, “Interfaces and Intermetallics,” The Mechanics of Solder Alloy Interconnects, ed. D. Frear et al. (New York: ITP, 1994), pp. 42–86.

    Google Scholar 

  8. R.J. Fields, S.R. Low III, and G.K. Lucey, Jr., “Physical and Mechanical Properties of Intermetallic Compounds Commonly Found in Solder Joints,” The Metal Science of Joining, ed. M.J. Cieslak et al. (Warrendale, PA: TMS, 1991), pp. 165–174.

    Google Scholar 

  9. L.M. Ostrovskaya, V.N. Rodin, and A.I. Kuznetsov, “Elastic Properties of Intermetallic Compounds Produced by Vacuum Deposition,” Soviet J. of Non-Ferrous Metallurgy (TSVETNYE METALLY), 26 (1985), p. 90.

    Google Scholar 

  10. B. Subrahmanyan, “Elastic Moduli of Some Complicated Binary Alloy Systems,” Trans. Jpn. Inst. Metals, 130 (1972), p. 93.

    Google Scholar 

  11. R. Cabaret, L. Guillet, and R. LeRoux, “The Elastic Properties of Metallic Alloys,” J. Inst. Metals, 75 (1949), p. 391.

    Google Scholar 

  12. L. Revay, “Interdiffusion and Formation of Intermetallic Compounds in Tin-Copper Alloy Surface Coatings,” Surface Technology, 5 (1977), p. 57.

    Article  CAS  Google Scholar 

  13. B. Bhushan et al., “Nanoindentation and Picoindentation Measurements Using a Capacitive Transducer System in Atomic Force Microscopy,” Phil. Mag. A, 74 (1996), p. 1117.

    CAS  Google Scholar 

  14. W.C. Oliver and G.M. Pharr, “An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments,” J. Mater. Res., 7 (1992), p. 1564.

    CAS  Google Scholar 

  15. A.C. Fischer-Cripps, Nanoindentation (New York: Springer-Verlag, 2002).

    Google Scholar 

  16. J.P. Lucas et al., “Nanoindentation Characterization of Microphases in Sn-3.5Ag Eutectic Solder Joints,” Fundamentals of Nanoindentation and Nanotribology, Proc. 522, ed. B.N. Lucas, W.C. Oliver, and J.E. Swindeman (Warrendale, PA: Mater. Res. Soc., 1998), pp. 339–345.

    Google Scholar 

  17. T.Y. Tsui, J. Vlassak, and W.D. Nix “Indentation Plastic Displacement Field: Part I. The Case of Soft Films on Hard Substrates,” J. Mater. Res., 14 (1999), p. 2196.

    CAS  Google Scholar 

  18. T.Y. Tsui, J. Vlassak, and W.D. Nix, “Indentation Plastic Displacement Field: Part II. The Case of Hard Films on Soft Substrates,” J. Mater. Res., 14 (1999), p. 2204.

    CAS  Google Scholar 

  19. R.R. Chromik and E.J. Cotts, “Thermodynamic and Kinetic Study of Phase Transformations in Solder/Metal Systems,” Electronic Packaging Materials Science IX, Proc. 445, ed. S.K. Groothuis et al. (Warrendale, PA: Mater. Res. Soc., 1997), pp. 31–36.

    Google Scholar 

  20. W.K. Warburton and D. Turnbull, “Fast Diffusion in Alloys,” Thin Solid Films, 25 (1975), p. 71.

    Article  CAS  Google Scholar 

  21. D. Lewis et al., “Determination of the Eutectic Structure in the Ag-Cu-Sn System,” J. Electron. Mater., 31 (2002), p. 161.

    Article  CAS  Google Scholar 

  22. R.R. Chromik et al., “Investigation of the Mechanical Properties of Pb-free Solder Joints by Nanoindentation,” Proc. SMTA International (Edina, MN: SMTA, 2002), p. 786.

    Google Scholar 

  23. R.R. Chromik et al., “Nanoindentation Measurements on Cu-Sn and Ag-Sn Intermetallics Formed in Pb-free Solder Joints,” Submitted to J. Mater. Res. (March 2003).

  24. A. Bolshakov and G.M. Pharr, “Influences of Pileup on the Measurement of Mechanical Properties by Load and Depth Sensing Indentation,” J. Mater. Res., 13 (1998), p. 1049.

    Article  CAS  Google Scholar 

  25. D. Tabor, The Hardness of Metals (Oxford, U.K.: Oxford University Press, 1951), pp. 67–83.

    Google Scholar 

  26. P.T. Vianco, J.A. Rejent, and A.C. Kilgo, “Time-Independent Mechanical and Physical Properties of the Ternary 95.5Sn-3.9Ag-0.6Cu Solder,” J. Electron. Mater., 32 (2003), p. 142.

    Article  CAS  Google Scholar 

  27. F.A. Stam and E. Davitt, “Effects of Thermomechanical Cycling on Lead and Lead-Free (SnPb and SnAgCu) Surface Mount Solder Joint,” Microelectronics Reliability, 41 (2001), p. 1815.

    Article  Google Scholar 

  28. M.R. Harrison, J.H. Vincent, and H.A.H. Steen, “Lead-Free Reflow Soldering for Electronics Assembly,” Soldering & Surface Mount Technology, 13 (2001), p. 21.

    Article  CAS  Google Scholar 

  29. G. Ghosh, “Phase Stability and Elastic Properties of Intermetallics Relevant to Electronics Packaging” (Paper presented at TMS Annual Meeting, San Diego, CA, 2–6 March 2003).

Download references

Author information

Authors and Affiliations

Authors

Additional information

For more information, contact Richard R. Chromik, Lehigh University, Materials Research Center, 5 East Packer Avenue, Bethlehem, Pennsylvania 18015; (610) 758-6879, fax (610) 758-3526, email chromik@lehigh.edu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chromik, R.R., Vinci, R.P., Allen, S.L. et al. Measuring the mechanical properties of Pb-free solder and Sn-based intermetallics by nanoindentation. JOM 55, 66–69 (2003). https://doi.org/10.1007/s11837-003-0144-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-003-0144-5

Keywords

Navigation