Skip to main content
Log in

Combinatorial treatment using citric acid, malic acid, and phytic acid for synergistical inactivation of foodborne pathogenic bacteria

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Inorganic germicides, such as chlorine and its derivatives, are widely used against surface pathogens in various food industries. Due to the potential toxicity of the disinfectants and their by-products, alternative and dosage-efficient methods should be developed to secure food safety and hygiene. Here, we present a natural organic acid-based combinatorial treatment that efficiently inactivated the selected foodborne pathogenic bacterial strains even at low concentration. The individual and/or combinatorial treatments of citric (CA), malic (MA), and phytic acid (PA) inactivated Escherichia coli and Staphylococcus aureus in concentration- and time-dependent fashion. At one selected concentration, the mixture of acids (CA+MA+PA) efficiently reduced E. coli and S. aureus viability by approximately 99.9% within 10 min. The combined application of three organic acids resulted in higher germicidal activity than the sum of the individual treatment inactivation levels, suggesting a synergistic effect among the acids. Our combined acid treatment disrupted bacterial membrane integrity and increased the intracellular reactive oxygen species. The inactivation efficiency of the presented organic acid mixture was also verified for Salmonella Typhimurium, Pseudomonas aeruginosa, and Listeria monocytogenes. In conclusion, we established a composition of natural acid-based mixture, allowing efficient surface disinfection against various Gram-positive and negative pathogenic bacteria through a synergistic effect mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Addis and D. Sisay, J. Trop. Dis., 3, 176 (2015).

    Google Scholar 

  2. F. Käferstein and M. Abdussalam, Bull. World Health Organ., 77, 347 (1999).

    PubMed  PubMed Central  Google Scholar 

  3. J. Meng and M. Doyle, Bull. Inst. Pasteur., 96, 151 (1998).

    Article  Google Scholar 

  4. E. C. Todd, J. Food Prot., 52, 595 (1989).

    Article  PubMed  Google Scholar 

  5. E. Scallan, R.M. Hoekstra, F. J. Angulo, R. V. Tauxe, M. A. Widdowson, S. L. Roy, J. L. Jones and P. M. Griffin, Emerg. Infect. Dis., 17, 7 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  6. P. Craven, W. Baine, D. Mackel, W. Barker, E. Gangarosa, M. Goldfield, H. Rosenfeld, R. Altman, G. Lachapelle and J. Davies, The Lancet, 305, 788 (1975).

    Article  Google Scholar 

  7. O. Lyytikäinen, T. Autio, R. Maijala, P. Ruutu, T. Honkanen-Buzalski, M. Miettinen, M. Hatakka, J. Mikkola, V.-J. Anttila and T. Johansson, J. Infect. Dis., 181, 1838 (2000).

    Article  PubMed  Google Scholar 

  8. K. G. Kerr and A. M. Snelling, J. Hosp. Infect., 73, 338 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. J. A. Hennekinne, M. L. De Buyser and S. Dragacci, FEMS Microbiol. Rev., 36, 815 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. B. P. Bell, M. Goldoft, P. M. Griffin, M. A. Davis, D. C. Gordon, P. I. Tarr, C. A. Bartleson, J. H. Lewis, T. J. Barrett and J. G. Wells, Jama, 272, 1349 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. D. Bermúdez-Aguirre and G.V. Barbosa-Cánovas, Food Control, 29, 82 (2013).

    Article  CAS  Google Scholar 

  12. E. J. Park, E. Alexander, G. A. Taylor, R. Costa and D. H. Kang, Lett. Appl. Microbiol., 46, 519 (2008).

    Article  PubMed  Google Scholar 

  13. S. McDonald, A. Lethorn, C. Loi, C. Joll, H. Driessen and A. Heitz, Water Sci. Technol., 60, 2493 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. H. Arora, M. W. LeChevallier and K. L. Dixon, J. Am. Water Works Assoc., 89, 60 (1997).

    Article  CAS  Google Scholar 

  15. M. J. Jeansonne and R. R. White, J. Endod., 20, 276 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. R. Virto, D. Sanz, I. Alvarez, Condon and J. Raso, Int. J. Food Microbiol., 103, 251 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. R. Virto, D. Sanz, I. Álvarez, S. Condón and J. Raso, J. Sci. Food Agric., 86, 865 (2006).

    Article  CAS  Google Scholar 

  18. S. H. Park, M. R. Choi, J. W. Park, K. H. Park, M. S. Chung, S. Ryu and D. H. Kang, J. Food Sci., 76, M293 (2011).

  19. Y. Huang and H. Chen, Food Control, 22, 1178 (2011).

    Article  CAS  Google Scholar 

  20. H. G. Sagong, S. Y. Lee, P. S. Chang, S. Heu, S. Ryu, Y. J. Choi and D. H. Kang, Int. J. Food Microbiol., 145, 287 (2011).

    Article  PubMed  Google Scholar 

  21. V. Ghate, A. Kumar, W. Zhou and H.-G. Yuk, Food Control, 57, 333 (2015).

    Article  CAS  Google Scholar 

  22. N. H. Kim and M. S. Rhee, Appl. Environ. Microbiol., 82, 1040 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. N. G. Marriott, M. W. Schilling and R. B. Gravani, Principles of food sanitation, 6th Edn., Springer, New York (2018).

    Book  Google Scholar 

  24. G. del Campo, I. Berregi, R. Caracena and J. I. Santos, Anal. Chim. Acta., 556, 462 (2006).

    Article  CAS  Google Scholar 

  25. Y. Hiasa, Y. Kitahori, J. Morimoto, N. Konishi, S. Nakaoka and H. Nishioka, Food Chem. Toxicol., 30, 117 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. M. Torre, A. R. Rodriguez and F. Saura-Calixto, Crit. Rev. Food Sci. Nutr., 30, 1 (1991).

    Article  CAS  PubMed  Google Scholar 

  27. M. Bari, D. Ukuku, T. Kawasaki, Y. Inatsu, K. Isshiki and S. Kawamoto, J. Food Prot., 68, 1381 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. M. Cho, E. L. Cates and J. H. Kim, Water Res., 45, 2104 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. L. K. Dhandole, Y. S. Seo, S. G. Kim, A. Kim, M. Cho and J. S. Jang, Photochem. Photobiol. Sci., 18, 1092 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. E. L. Cates, M. Cho and J. H. Kim, Environ. Sci. Technol., 45, 3680 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. J. Shim, Y. S. Seo, B. T. Oh and M. Cho, J. Hazard. Mater., 306, 133 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. H. J. Park, T. T. Nguyen, J. Yoon and C. Lee, Environ. Sci. Technol., 46, 11299 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. A. Chudnicka and G. Matysik, J. Ethnopharmacol., 99, 281 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. S. Eswaranandam, N. Hettiarachchy and M. Johnson, J. Food Sci., 69, 79 (2004).

    Google Scholar 

  35. B. Ray and D. Mark, Food biopreservatives of microbial origin, CRC press, Boca Raton, FL (2019).

    Book  Google Scholar 

  36. M. Cho, V. Gandhi, T. M. Hwang, S. Lee and J. H. Kim, Water Res., 45, 1063 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. M. Berney, H. U. Weilenmann and T. Egli, Microbiology, 152, 1719 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. P. Breeuwer and T. Abee, Int. J. Food Microbiol., 55, 193 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Y. S. Seo, N. Choi, K. Kim and M. Cho, Korean J. Chem. Eng., 36, 1799 (2019).

    Article  CAS  Google Scholar 

  40. Q. Zhou, Y. Zhao, H. Dang, Y. Tang and B. Zhang, J. Food Prot., 82, 826 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. W. Evans, E. McCourtney and R. Shrager, J. Am. Oil Chem. Soc., 59, 189 (1982).

    Article  CAS  Google Scholar 

  42. Q. Wang, E. F. de Oliveira, S. Alborzi, L. J. Bastarrachea and R. V. Tikekar, Sci. Rep., 7, 8325 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. T. King, S. Lucchini, J. C. Hinton and K. Gobius, Appl. Environ. Microbiol., 76, 6514 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. A. M. Wesche, J. B. Gurtler, B. P. Marks and E. T. Ryser, J. Food Prot., 72, 1121 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. G. R. Buettner, Arch. Biochem. Biophys., 300, 535 (1993).

    Article  CAS  PubMed  Google Scholar 

  46. M. Y. Akbas and H. Olmez, Lett. Appl. Microbiol., 44, 619 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. N. Guan and L. Liu, Appl. Microbiol. Biotechnol., 104, 51 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by The Food Industry Promotional Agency of Korea (R&D Support Program 2019). This work was supported by Korea Environment Industry & Technology Institute (KEITI) through Project for developing innovative drinking water and wastewater technologies, funded by Korea Ministry of Environment(MOE) (2020002690007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Cho.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Electronic supplementary material

11814_2021_751_MOESM1_ESM.pdf

Combinatorial treatment using citric acid, malic acid, and phytic acid for synergistical inactivation of foodborne pathogenic bacteria

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, Ys., Lee, G., Song, S. et al. Combinatorial treatment using citric acid, malic acid, and phytic acid for synergistical inactivation of foodborne pathogenic bacteria. Korean J. Chem. Eng. 38, 826–832 (2021). https://doi.org/10.1007/s11814-021-0751-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0751-2

Keywords

Navigation