Skip to main content

Advertisement

Log in

Modeling and analysis of circulation variables of continuous sorbent loop cycling for CO2 capture

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Carbon capture and storage (CCS) technologies are a cornerstone for reducing CO2 emissions from energy and energy-intensive industries. Among the various CCS technologies, solid sorbent looping systems are considered to be potentially promising solutions for reducing CO2 capture energy penalty. We present an evaluation module for a carbonator with sorbent looping cycle to calculate the carbonation efficiency. The module incorporates a simple sorbent activity model, and the solid/gas balances are constructed by assuming simple reactor mixing quality. By conducting simulations, we examine the variation in the carbonation efficiencies as a function of the sorbent looping operation factors and discuss an optimum operating strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Karl, T. Svendby, S. E. Walker, A. S. Velken, N. Castell and S. Solberg, Sci. Total Environ., 527-528, 185 (2015).

    Article  CAS  Google Scholar 

  2. D. C. Ozcan, H. Ahn and S. Brandani, Int. J. Greenhouse Gas Control, 19, 530 (2013).

    Article  CAS  Google Scholar 

  3. T. Shimizu, T. Hirama, H. Hosoda, K. Kitano, M. Inagaki and K. Tejima, Chem. Eng. Res. Des., 77, 62 (1999).

    Article  CAS  Google Scholar 

  4. D. A. Nemtsov and A. Zabaniotou, Chem. Eng. J., 143, 10 (2008).

    Article  CAS  Google Scholar 

  5. K. Atsonios, P. Grammelis, S. K. Antiohos, N. Nikolopoulos and E. Kakaras, Fuel, 153, 210 (2015).

    Article  CAS  Google Scholar 

  6. A. Lasheras, J. Ströhle, A. Galloy and B. Epple, Int. J. Greenhouse Gas Control, 5, 686 (2011).

    Article  CAS  Google Scholar 

  7. J. Ylätalo, J. Ritvanen, B. Arias, T. Tynjälä and T. Hyppänen, Int. J. Greenhouse Gas Control, 9, 130 (2012).

    Article  Google Scholar 

  8. F. Fang, Z.- S. Li, Cai and S. Ning, Energy Fuels, 23, 207 (2009).

    Article  CAS  Google Scholar 

  9. S. Wang, H. Shen, S. Fan, Y. Zhao, X. Ma and J. Gong, AIChE J., 59, 3586 (2013).

    Article  CAS  Google Scholar 

  10. B. Hejazi, J. R. Grace, X. Bi and A. Mahecha-Botero, Fuel, 117, Part B, 1256 (2014).

    Article  CAS  Google Scholar 

  11. A. Sarkar, W. Pan, D. Suh, E. D. Huckaby and X. Sun, Powder Technol., 265, 35 (2014).

    Article  CAS  Google Scholar 

  12. K. Atsonios, M. Zeneli, A. Nikolopoulos, N. Nikolopoulos, P. Grammelis and E. Kakaras, Fuel, 153, 371 (2015).

    Google Scholar 

  13. M. Ayobi, S. Shahhosseini and Y. Behjat, J. Taiwan Inst. Chem. E., 45, 421 (2014).

    Article  CAS  Google Scholar 

  14. D. Kunii and O. Levenspiel, Ind. Eng. Chem. Proc. Des. Dev., 7, 481 (1968).

    Article  CAS  Google Scholar 

  15. D. Kunii and O. Levenspiel, Chem. Eng. Sci., 55, 4563 (2000).

    Article  CAS  Google Scholar 

  16. J. C. Abanades, E. J. Anthony, D. Y. Lu, C. Salvador and D. Alvarez, AIChE J., 50, 1614 (2004).

    Article  CAS  Google Scholar 

  17. M. Alonso, N. Rodríguez, G. Grasa and J. C. Abanades, Chem. Eng. Sci., 64, 883 (2009).

    Article  CAS  Google Scholar 

  18. D. K. Lee, Chem. Eng. J., 100, 71 (2004).

    Article  CAS  Google Scholar 

  19. K.-Y. Yoo, D.-Y. Shin and M.-J. Park, Korean J. Chem. Eng., 31, 1532 (2014).

    Article  CAS  Google Scholar 

  20. D. Alvarez and J. C. Abanades, Ind. Eng. Chem. Res., 44, 5608 (2005).

    Article  CAS  Google Scholar 

  21. C. Cao, K. Zhang, C. He, Y. Zhao and Q. Guo, Chem. Eng. Sci., 66, 375 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myung-June Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoo, KY., Park, JS. & Park, MJ. Modeling and analysis of circulation variables of continuous sorbent loop cycling for CO2 capture. Korean J. Chem. Eng. 33, 1153–1158 (2016). https://doi.org/10.1007/s11814-015-0226-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-015-0226-4

Keywords

Navigation