Skip to main content

Advertisement

Log in

High surface area polyaniline nanofiber synthesized in compressed CO2 and its application to a hydrogen sensor

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

High surface area polyaniline (HSA PANI) nanofibers were synthesized through oxidative polymerization of aniline in compressed CO2 using cobalt chloride as an additive. SEM and TEM analyses showed that the HSA PANI nanofibers had a coarse surface of very thin nanofibers. The HSA PANI nanofibers had a fairly uniform diameter range of 70-90 nm with a length of 0.5–1 µm, and showed an electrical conductivity (EC) of 3.46 S/cm. TGA analysis revealed that the HSA PANI nanofibers had more doping substances than did ordinary PANI nanofibers. In the case of the HSA PANI nanofibers, direct measurement of the surface area using gas adsorption method showed high value of 68.4m2/g, which was nearly twice that of ordinary PANI nanofibers. The HSA PANI nanofibers were used to fabricate the hydrogen sensor, exhibiting a large increase in resistance upon exposure to hydrogen gas. The hydrogen sensor in this work showed excellent characteristics, such as high sensitivity and short response time. The limit of detection (LOD) and limit of quantification (LOQ) of the hydrogen sensor were very low to show 40 ppm and 133 ppm of hydrogen, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Huang, S. Virji, B. H. Weiller and R. B. Kaner, J. Am. Chem. Soc., 125, 314 (2003).

    Article  CAS  Google Scholar 

  2. R. Arsat, X. F. Yu, Y. X. Li, W. Wlodarski and K. Kalantar-Zadeh, Sens. Actuat. B, 137, 529 (2009).

    Article  CAS  Google Scholar 

  3. A. Z. Sadek, W. Wlodarski, K. Kalantar-Zadeh, C. Baker and R. B. Kaner, Sens. Actuat. A, 139, 53 (2007).

    Article  CAS  Google Scholar 

  4. H. Zhang, R. Liu and J. Zheng, Synth. Met., 167, 5 (2013).

    Article  CAS  Google Scholar 

  5. G. D. Khuspe, S. T. Navale, M. A. Cougule and V. B. Patil, Synth. Met., 185, 1 (2013).

    Google Scholar 

  6. C. Murugan, E. Subramanian and D. P. Padiyan, Synth. Met., 192, 106 (2014).

    Article  CAS  Google Scholar 

  7. P. A. Kumar, S. Chakraborty and M. Ray, Chem. Eng. J., 141, 130 (2008).

    Article  CAS  Google Scholar 

  8. D. Mahanta, G. Madras, S. Radhakrishnan and S. Patil, J. Phys. Chem. B, 112, 10153 (2008).

    Article  CAS  Google Scholar 

  9. L. A. M. Ruotolo and J. C. Gubulin, React. Funct. Polym., 62, 141 (2005).

    Article  CAS  Google Scholar 

  10. M. S. Lashkenari, B. Davodi and H. Eisazadeh, Korean J. Chem. Eng., 28, 1532 (2011).

    Article  CAS  Google Scholar 

  11. S. S. Srinivasan, R. Ratnadurai, M. U. Niemann, A. R. Phani, D. Y. Goswami and E. K. Stefanakos, Int. J. Hydrogen Energy, 35, 225 (2010).

    Article  CAS  Google Scholar 

  12. S. Li, G. Zhang, G. Jing and J. Kan, Synth. Met., 158, 242 (2008).

    Article  CAS  Google Scholar 

  13. J. Huang, S. Virji, B. H. Weiller and R. B. Kaner, J. Am. Chem. Soc., 125, 314 (2003).

    Article  CAS  Google Scholar 

  14. X. B. Yan, Z. J. Han, Y. Yang and B. K. Tay, Sens. Actuat. B, 123, 107 (2007).

    Article  CAS  Google Scholar 

  15. H. Mi, X. Zhang, S. Yang, X. Ye and J. Luo, Mater. Chem. Phys., 112, 127 (2008).

    Article  CAS  Google Scholar 

  16. H. Mi, X. Zhang, X. Ye and S. Yang, J. Power Sources, 176, 403 (2008).

    Article  CAS  Google Scholar 

  17. G. Ciric-Marjanovic, Synth. Met., 177, 1 (2013).

    Article  CAS  Google Scholar 

  18. H. D. Tran, J. M. D’Arcy, Y. Wang, P. J. Beltramo, V. A. Strong and R. B. Kaner, J. Mater. Chem., 21, 3534 (2011).

    Article  CAS  Google Scholar 

  19. J. Stejskal, I. Sapurina and M. Trchová, Prog. Polym. Sci., 35, 1420 (2010).

    Article  CAS  Google Scholar 

  20. E. C. Venancio, P.-C. Wang and A. G. MacDiarmid, Synth. Met., 156, 357 (2006).

    Article  CAS  Google Scholar 

  21. Q. M. Pham, J.-S. Kim and S. Kim, Synth. Met., 160, 394 (2010).

    Article  CAS  Google Scholar 

  22. Z. Zhang, Z. Wei, L. Zhang and M. Wan, Acta Mater., 53, 1373 (2005).

    Article  CAS  Google Scholar 

  23. G. Li, S. Pang, G. Xie, Z. Wang, H. Peng and Z. Zhang, Polymer, 47, 1456 (2006).

    Article  CAS  Google Scholar 

  24. Y. Guo and Y. Zhou, Eur. Polym. J., 43, 2292 (2007).

    Article  CAS  Google Scholar 

  25. T. Thanpitcha, A. Sirivat, A. M. Jamieson and R. Rujiravanit, Eur. Polym. J., 44, 3423 (2008).

    Article  CAS  Google Scholar 

  26. Z. Zhang, J. Deng, L. Yu and M. Wan, Synth. Met., 158, 712 (2008).

    Article  CAS  Google Scholar 

  27. B. Panella, L. Kossykh, U. Dettlaff-Weglikowska, M. Hirscher, G. Zerbi and S. Roth, Synth. Met., 151, 208 (2005).

    Article  CAS  Google Scholar 

  28. M. U. Jurczyk, A. Kumar, S. Srinivasan and E. Stefanakos, Int. J. Hydrogen Energy, 32, 1010 (2007).

    Article  CAS  Google Scholar 

  29. S. J. Cho, K. Choo, D. P. Kim and J. W. Kim, Catal. Today, 120, 336 (2007).

    Article  CAS  Google Scholar 

  30. J. Germain, J. M. J. Fréchet and F. Svec, J. Mater. Chem., 17, 4989 (2007).

    Article  CAS  Google Scholar 

  31. A. Rahy, T. Rguig, S. J. Cho, C. E. Bunker and D. J. Yang, Synth. Met., 161, 280 (2011).

    Article  CAS  Google Scholar 

  32. S. Virji, R. B. Kaner and B. H. Weiller, J. Phys. Chem. B, 110, 22266 (2006).

    Article  CAS  Google Scholar 

  33. J. D. Fowler, S. Virji, R. B. Kaner and B. H. Weiller, J. Phys. Chem. C, 113, 6444 (2009).

    Article  CAS  Google Scholar 

  34. P.-C. Wang, Y. Dan and L.-H. Liu, Mater. Chem. Phys., 144, 155 (2014).

    Article  CAS  Google Scholar 

  35. J. L. Kendall, D. A. Canelas, J. L. Young and J. M. DeSimone, Chem. Rev., 99, 543 (1999).

    Article  CAS  Google Scholar 

  36. A. I. Cooper, J. Mater. Chem., 10, 207 (2000).

    Article  CAS  Google Scholar 

  37. E. J. Beckman, J. Supercrit. Fluids, 28, 121 (2004).

    Article  CAS  Google Scholar 

  38. S. P. Nalawade, F. Picchioni and L. P. B. M. Janssen, Prog. Polym. Sci., 31, 19 (2006).

    Article  CAS  Google Scholar 

  39. M. Y. Kim, K.-P. Yoo and J. S. Lim, Korean J. Chem. Eng., 24, 860 (2007).

    Article  CAS  Google Scholar 

  40. J. G. Masters, Y. Sun, A. G. MacDiarmid and A. J. Epstein, Synth. Met., 41, 711 (1991).

    Article  Google Scholar 

  41. P.-C. Wang, Z. Huang and A. G. MacDiarmid, Synth. Met., 101, 852 (1999).

    Article  CAS  Google Scholar 

  42. P.-C. Wang, E. C. Venancio, D. M. Sarno and A. G. MacDiarmid, React. Funct. Polym., 69, 217 (2009).

    Article  CAS  Google Scholar 

  43. X. Jing, Y. Wang, D. Wu and J. Qiang, Ultrason. Sonochem., 14, 75 (2007).

    Article  CAS  Google Scholar 

  44. N.-R. Chiou and A. J. Epstein, Synth. Met., 153, 69 (2005).

    Article  CAS  Google Scholar 

  45. A. Rahy, M. Sakrout, S. Manohar, S. J. Cho, J. Ferraris and D. J. Yang, Chem. Mater., 20, 4808 (2008).

    Article  CAS  Google Scholar 

  46. H. D. Tran, Y. Wang, J. M. D’Arcy and R. B. Kaner, ACS Nano, 2, 1841 (2008).

    Article  CAS  Google Scholar 

  47. Y. Wang and X. Jing, J. Phys. Chem. B, 112, 1157 (2008).

    Article  CAS  Google Scholar 

  48. X. Zhang, R. Chan-Yu-King, A. Jose and S. K. Manohar, Synth. Met., 145, 23 (2004).

    Article  CAS  Google Scholar 

  49. N.-R. Chiou and A. J. Epstein, Adv. Mater., 17, 1679 (2005).

    Article  CAS  Google Scholar 

  50. K. Gupta, G. Chakraborty, S. Ghatak, P. C. Jana and A. K. Meikap, J. Appl. Polym. Sci., 115, 2911 (2010).

    Article  CAS  Google Scholar 

  51. D. Zhang, Polym. Test., 26, 9 (2007).

    Article  CAS  Google Scholar 

  52. S. Bhadra and D. Khastgir, Polym. Degrad. Stab., 92, 1824 (2007).

    Article  CAS  Google Scholar 

  53. S. Bhadra and D. Khastgir, Polym. Test., 27, 851 (2008).

    Article  CAS  Google Scholar 

  54. L. Zhang and M. Wan, Adv. Funct. Mater., 13, 815 (2003).

    Article  CAS  Google Scholar 

  55. M. Angelopoulos, A. Ray and A. G. MacDiarmid, Synth. Met., 21, 21 (1987).

    Article  CAS  Google Scholar 

  56. D. A. Armbruster and T. Pry, Clin. Biochem. Rev., 29 Suppl 1, S49 (2008).

  57. A. G. MacDiarmid, Synth. Met., 125, 11 (2001).

    Article  Google Scholar 

  58. D. Nicolas-Debarnot and F. Poncin-Epaillard, Anal. Chim. Acta, 475, 1 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunwook Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pham, Q.M., Kim, S. High surface area polyaniline nanofiber synthesized in compressed CO2 and its application to a hydrogen sensor. Korean J. Chem. Eng. 33, 290–298 (2016). https://doi.org/10.1007/s11814-015-0122-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-015-0122-y

Keywords

Navigation