Skip to main content
Log in

Application of modified Tao-Mason equation of state to refrigerant mixtures

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

In our previous work, we modified the Tao-Mason EOS [1] to predict the volumetric properties of pure refrigerants [2]. In the present study, we have successfully extended the modified Tao-Mason EOS to refrigerant mixtures. The second virial coefficient, B2(T), and the temperature-dependent correction factor α(T) and van der Waals co-volume b(T) were calculated from a two-parameter corresponding-states correlation along with the enthalpy of vaporization and the molar density, both at the normal boiling point. Then the cross parameters B12(T), α 12(T), and b12(T), were determined with the help of simple combining rules. The constructed Tao-Mason EOS was employed to predict the densities and vapor pressures of several HFC, hydrocarbons and HFO mixtures. The calculated results were compared with literature data. The overall agreement between our results and literature values is remarkable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.-M. Tao and E. A. Mason, J. Chem. Phys., 100, 9075 (1994).

    Article  CAS  Google Scholar 

  2. M. M. Papari, R. Nejabat, J. Moghadasi and A. Campo, Int. J. Refrig., 34, 268 (2011).

    Article  CAS  Google Scholar 

  3. H. Madani, C. Coquelet and D. Richon, Energy Procedia, 18, 21 (2012).

    Article  CAS  Google Scholar 

  4. H. Madani, A. Valtz, C. Coquelet, A. H. Meniai and D. Richon, Fluid Phase Equilib., 268, 68 (2008).

    Article  CAS  Google Scholar 

  5. Q. Chen, R. Hong and G. Chen, Fluid Phase Equilib., 269, 113 (2008).

    Article  CAS  Google Scholar 

  6. M. Mohanraj, S. Jayaraj and C. Muraleedharan, Int. J. Greenhouse Gas Control, 3, 108 (2009).

    Article  CAS  Google Scholar 

  7. M. Fukuta, M. Ito, T. Yanagisawa and Y. Ogi, Int. J. Refrig., 33, 390 (2010).

    Article  CAS  Google Scholar 

  8. M. M. Papari, A. Razavizadeh, F. Mokhberi and A. Boushehri, Ind. Eng. Chem. Res., 42, 3802 (2003).

    Article  CAS  Google Scholar 

  9. Z. Sharafi and A. Boushehri, Int. J. Thermophys., 26, 785 (2006).

    Article  Google Scholar 

  10. V. Feroiu and D. Geana, Fluid Phase Equilib., 207, 283 (2003).

    Article  CAS  Google Scholar 

  11. E. K. Goharshadi and M. Moosavi, Thermochim. Acta, 447, 64 (2006).

    Article  CAS  Google Scholar 

  12. M. Richter, M. O. McLinden and E. W. Lemmon, J. Chem. Eng. Data, 56, 3254 (2011).

    Article  CAS  Google Scholar 

  13. K. Yamaya, A. Matsuguchi, N. Kagawa and S. Koyama, J. Chem. Eng. Data, 56, 1535 (2011).

    Article  CAS  Google Scholar 

  14. R. Akasaka, Int. J. Thermophys., 32, 1125 (2011).

    Article  CAS  Google Scholar 

  15. R. Akasaka, Fluid Phase Equilib., 358, 98 (2013).

    Article  CAS  Google Scholar 

  16. R. Akasaka, K. Tanakaand and Y. Higashi, Int. J. Refrig., 33, 52 (2010).

    Article  CAS  Google Scholar 

  17. R. Akasaka, Int. J. Refrig., 33, 907 (2010).

    Article  CAS  Google Scholar 

  18. J. S. Brown, Int. J. Refrig., 30, 1319 (2007).

    Article  CAS  Google Scholar 

  19. C. Di Nicola, G. Di Nicola, M. Pacetti, F. Polonara and G. Santori, J. Chem. Eng. Data, 55, 3302 (2010).

    Article  Google Scholar 

  20. K. Tanaka, G. Takahashi and Y. Higashi, J. Chem. Eng. Data, 55, 2169 (2010).

    Article  CAS  Google Scholar 

  21. T. Kamiaka, C. Dangand and E. Hihara, Int. J. Refrig., 36, 965 (2013).

    Article  CAS  Google Scholar 

  22. M. Li, C. Dang and E. Hihara, Int. J. Heat Mass Transfer, 55, 3437 (2012).

    Article  CAS  Google Scholar 

  23. J. S. Brown, C. Zilio and A. Cavallini, Proc. 3rd IIR Conf. on Thermophys Props. & Transport Processes of Refrigs, Boulder, Colorado (2009).

  24. R. A. Perkins and M. L. Huber, J. Chem. Eng. Data, 56, 4868 (2011).

    Article  CAS  Google Scholar 

  25. B. Haghighi, F. Heidari, B. Haghighi, M. M. Papari and B. Haghighi, Int. J. Air-Cond. Refrig., 19, 45 (2011).

    Article  CAS  Google Scholar 

  26. J. Moghadasi, D. Mohammad-Aghaie and M. M. Papari, Ind. Eng. Chem. Res., 45, 9211 (2006).

    Article  CAS  Google Scholar 

  27. J. Moghadasi, M. M. Papari, D. Mohammad-Aghaie and A. Campo, Bull. Chem. Soc. Jpn., 81, 220 (2008).

    Article  CAS  Google Scholar 

  28. G. Ihm, Y. Song and E. A. Mason, J. Chem. Phys., 94, 3839 (1991).

    Article  CAS  Google Scholar 

  29. H. Eslami, N. Mehdipour and A. Boushehri, Int. J. Refrig., 29, 150 (2006).

    Article  CAS  Google Scholar 

  30. F. Yousefi, J. Moghadasi, M. M. Papari and A. Campo, Ind. Eng. Chem. Res., 48, 5079 (2009).

    Article  CAS  Google Scholar 

  31. S. Sheikh, M. M. Papari and A. Boushehri, Ind. Eng. Chem. Res., 41, 3274 (2002).

    Article  CAS  Google Scholar 

  32. D.Y. Peng and D. B. Robinson, Ind. Eng. Chem. Fundam., 15, 59 (1976).

    Article  CAS  Google Scholar 

  33. F.-M. Tao and E. A. Mason, Int. J. Thermophys., 13, 1053 (1992).

    Article  CAS  Google Scholar 

  34. A. Boushehri and E. A. Mason, Int. J. Thermophys., 14, 685 (1993).

    Article  CAS  Google Scholar 

  35. M. H. Ghatee and A. Boushehri, Int. J. Thermophys., 17, 945 (1996).

    Article  CAS  Google Scholar 

  36. N. Mehdipourand A. Boushehri, Int. J. Thermophys., 19, 331 (1998).

    Article  Google Scholar 

  37. H. Eslami, Int. J. Thermophys., 22, 1781 (2001).

    Article  CAS  Google Scholar 

  38. M. M. Papari, M. Kiani, R. Behjatmanesh-Ardakani, J. Moghadasi and A. Campo, J. Mol. Liq., 161, 148 (2011).

    Article  CAS  Google Scholar 

  39. M. M. Papari, R. Behjatmanesh-Ardakani, M. Kiani, J. Moghadasi and A. Campo, Colloid Polym. Sci., 289, 1081 (2011).

    Article  CAS  Google Scholar 

  40. G. Ihm, Y. Song and E. A. Mason, Mol. Phys., 75, 897 (1992).

    Article  CAS  Google Scholar 

  41. H. Eslami, M. M. Papari and J. Boushehri, J. Phys. Soc. Jpn., 70, 1015 (2001).

    Article  CAS  Google Scholar 

  42. P. J. Mohr, B. N. Taylor and D. B. Newell, Rev. Mod. Phys., 84, 1527 (2012).

    Article  CAS  Google Scholar 

  43. C. Tsonopoulos, AIChE J., 20, 263 (1974).

    Article  CAS  Google Scholar 

  44. J. Pannock and D. A. Didion, The Performance of Chlorine-Free Binary Zeotropic Refrigerant Mixtures in a Heat Pump, Building and Fire Research Laboratory National Institute of Standards and Technology Gaithersburg, Maryland (1991).

    Google Scholar 

  45. L. A. Weber and D. R. Defibaugh, Int. J. Thermophys., 15, 863 (1994).

    Article  CAS  Google Scholar 

  46. F. Weber, Fluid Phase Equilib., 174, 165 (2000).

    Article  CAS  Google Scholar 

  47. H. L. Zhang, H. Sato and K. Watanabe, J. Chem. Eng. Data, 41, 1401 (1996).

    Article  CAS  Google Scholar 

  48. H. Kiyoura, J. Takebe, H. Uchida, H. Sato and K. Watanabe, J. Chem. Eng. Data, 41, 1409 (1996).

    Article  CAS  Google Scholar 

  49. H. L. Zhang, S. Tada, H. Sato and K. Watanabe, Fluid Phase Equilib., 150-151, 333 (1998).

    Article  Google Scholar 

  50. J. V. Widiatmo, T. Fujimine, H. Sato and K. Watanabe, J. Chem. Eng. Data, 42, 270 (1997).

    Article  CAS  Google Scholar 

  51. L. Meng, Y. Y. Duan and Q. Chen, J. Chem. Eng. Data, 49, 1821 (2004).

    Article  CAS  Google Scholar 

  52. C. Yokoyama, T. Nishino and M. Takahashi, Int. J. Thermophys., 25, 71 (2004).

    Article  CAS  Google Scholar 

  53. T. Sato, H. Kiyoura, H. Sato and K. Watanabe, J. Chem. Eng. Data, 39, 855 (1994).

    Article  CAS  Google Scholar 

  54. X. J. Feng, Y. Y. Duan and W. Dong, J. Chem. Eng. Data, 52, 1354 (2007).

    Article  CAS  Google Scholar 

  55. G. Raabe, J. Chem. Eng. Data, 58, 1867 (2013).

    Article  CAS  Google Scholar 

  56. IUPAC Ionic Liquids Database (IL Thermo), NIST Standard Reference Database#147, http://ilthermo.boulder.nist.gov/ILThermo/mainmenu.uix, Access January (2008).

  57. Y. Higashi and K. Tanaka, J. Chem. Eng. Data, 55, 1594 (2010).

    Article  CAS  Google Scholar 

  58. M. O. McLinden, M. Thol and E. W. Lemmon, Thermodynamic Properties of trans-1,3,3,3-tetrafluoropropene [R1234ze(E)]:Measurements of Density and Vapor Pressure and a Comprehensive Equation of State, International Refrigeration and Air Conditioning Conference at Purdue (2010).

    Google Scholar 

  59. G. Di Nicola, G. Passerini, F. Polonaraand R. Stryjek, Fluid Phase Equilib, 360, 124 (2013).

    Article  Google Scholar 

  60. Y. Kayukawa, M. Hasumoto, Y. Kano and K. Watanabe, J. Chem. Eng. Data, 50, 565 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoumeh Kiani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiani, M., Papari, M.M., Nowruzian, Z. et al. Application of modified Tao-Mason equation of state to refrigerant mixtures. Korean J. Chem. Eng. 32, 1361–1368 (2015). https://doi.org/10.1007/s11814-014-0332-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0332-8

Keywords

Navigation