Skip to main content
Log in

A novel desulfurization practice based on diesel acidification prior to activated carbon adsorption

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Commercial diesel is often rich with organosulfur compounds and a value of 7,100 mgS/kg was recently reported. As confirmed by chromatographic analysis, about 36% of sulfur compounds are originated from dibenzothiophene. Following uncommon desulfurization method, organosulfur compounds were efficiently removed upon diesel acidification by organic acids prior to activated carbon adsorption. Protonation of S-containing compounds has enhanced their uptake by activated carbon. Competitive adsorption of di/tri/tetra-aromatics and dibenzothiophene from synthetic fuel proved that the later solute was preferentially removed against other aromatics upon fuel acidification. Results showed that 48% of organosulfur compounds were eliminated upon adding acetic acid to a final content of 3% by vol.. Principal component analysis indicated that acid content and carbon mass are the most significant factors on organosulfur compounds removal: %Removal=5.8 (Acid Content)+6.3 (Mass)-0.02 (PD)-0.90 (Temp). The practical efficiency of the proposed method was demonstrated by removing organosulfur compounds from commercial diesel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Z. Abghari, S. Shokri, B. Baloochi, M. A. Marvast, S. Ghanizadeh and A. Behroozi, Korean J. Chem. Eng., 28, 93 (2011).

    Article  CAS  Google Scholar 

  2. M. Seredych, Y. Lison, U. Jans and T. J. Bandosz, Carbon, 47, 2491 (2009).

    Article  CAS  Google Scholar 

  3. S. Lee, R. Kumar and M. Krumpelt, Sep. Purif. Technol., 26, 247 (2002).

    Article  CAS  Google Scholar 

  4. H. Kim, J. J. Lee and S. H. Moon, Appl. Catal. B: Environ., 44, 287 (2003).

    Article  CAS  Google Scholar 

  5. A. Srivastav and V.C. Srivastava, J. Hazard. Mater., 170, 1133 (2009).

    Article  CAS  Google Scholar 

  6. V. M. Bhandari, C. H. Ko, J. G. Park, S. Han, S. Cho and J. Kim, Chem. Eng. Sci., 61, 2599 (2006).

    Article  CAS  Google Scholar 

  7. A. J. Hernandez-Maldonado and R.T. Yang, Ind. Eng. Chem. Res., 43, 1081 (2004).

    Article  CAS  Google Scholar 

  8. F. Mustafa, M.A. Al-Ghouti, F. I. Khalili and Y. S. Al-Degs, J. Hazard. Mater., 182, 97 (2010).

    Article  CAS  Google Scholar 

  9. K. S. Kim, J. O Park, J. H. Lee, T. H. Jun and I. Kim, Environ. Eng. Res., 18, 229 (2013).

    Article  Google Scholar 

  10. M. Muzic, K. Sertic-Bionda, Z. Gomzi, S. Podolski and S. Telen, Chem. Eng. Res. Design, 88, 487 (2010).

    Article  CAS  Google Scholar 

  11. Y.A. Alhamed and H. S. Bamufleh, Fuel, 88, 87 (2009).

    Article  CAS  Google Scholar 

  12. J. Bu, G. Loh, C. Gwie, S. Dewiyanti, M. Tasrif and A. Borgna, Chem. Eng. J., 166, 207 (2011).

    Article  CAS  Google Scholar 

  13. C.O. Ania and T. J. Bandosz, Carbon, 44, 2404 (2006).

    Article  CAS  Google Scholar 

  14. ASTM D2622–08 Standard Test Method for Sulfur in Petroleum Products by Wavelength Dispersive X-ray Fluorescence Spectrometry. Volume 15.01.

  15. Jordanian Institution for Standard and Metrology (JS 195/2004). Petroleum and Petroleum Products–Automotive fuels–Diesel oil (2004).

    Google Scholar 

  16. M. Jiang, T.N. Flora, R. Ataur and P. Viral, Thermo. Chem. Acta, 434, 27 (2005).

    Article  CAS  Google Scholar 

  17. Y. Yang, H. Lu, P. Ying, Z. Jiang and C. Li, Carbon, 45, 3042 (2007).

    Article  CAS  Google Scholar 

  18. A. El-Sheikh, Y. Al-Degs, R.M. Al-As’ad and J.A. Sweileh, Desalination, 270, 214 (2011).

    Article  CAS  Google Scholar 

  19. A. A. Issa, Y. S. Al-Degs, M.A. Al-Ghouti and A.M. Olimat, Chem. Eng. J., 240, 554 (2014).

    Article  CAS  Google Scholar 

  20. M. I. El-Barghouthi, A. H. El-Sheikh, Yahya S. Al-Degs and G. M. Walker, Sep. Sci. Technol., 42, 2195 (2007).

    Article  CAS  Google Scholar 

  21. Y. S. Al-Degs, A. H. El-Sheikh, A. A. Issa, M.A. Al-Ghouti and M. Sunjuk, Water Sci. Technol., 66, 1647 (2012).

    Article  CAS  Google Scholar 

  22. C. Yu, J. Qiu, Y. Sun, X. Li, G. Chen and Z. Zhao, J. Porous Mater., 15, 151 (2008).

    Article  CAS  Google Scholar 

  23. R. G. Brereton, Chemometrics: Data Analysis for the Laboratory and Chemical Plant, Wiley (2003).

    Book  Google Scholar 

  24. R. Dhoble, S. Lunge, A. Bhole and S. Rayalu, Water Res., 45, 4769 (2011).

    Article  CAS  Google Scholar 

  25. C. Namasivayam and D. Kavitha, Dyes Pigm., 54, 47 (2002).

    Article  CAS  Google Scholar 

  26. S. Faust and O. Aly, Adsorption processes for water treatment, Butterworth Publishers, USA (1987).

    Google Scholar 

  27. M. A. Fazal, A. S. Haseeb and H.H. Masjuki, Energy Conserv. Manage., 67, 251 (2012).

    Article  Google Scholar 

  28. UNE EN-590, Automotive fuels-diesel-requirements and test methods (2004).

    Google Scholar 

  29. ASTM D 975-06, Standard specification for diesel fuel oils.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ahmad Al-Ghouti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Ghouti, M.A., Al-Degs, Y.S. A novel desulfurization practice based on diesel acidification prior to activated carbon adsorption. Korean J. Chem. Eng. 32, 685–693 (2015). https://doi.org/10.1007/s11814-014-0303-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0303-0

Keywords

Navigation