Skip to main content
Log in

Sorption and desorption kinetics of PAHs in coastal sediment

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Sorption and desorption kinetics of PAHs (naphthalene, phenanthrene and pyrene) in coastal sediment were investigated. Several kinetic models were used to analyze the kinetics: one-site mass transfer model (OSMTM), pseudo-first-order kinetic model (PFOKM), pseudo-second-order kinetic model (PSOKM), two compartment firstorder kinetic model (TCFOKM) and modified two compartment first-order kinetic model (MTCFOKM). Among the models, the MTCFOKM was the best in fitting both sorption and desorption kinetic data, and therefore could predict the most accurately. In MTCFOKM, the fast sorption fraction (f′1, s ) increased with the hydrophobicity (K ow ) of the PAHs, whereas the fast desorption fraction (f′1, d ) decreased. The fast sorption rate constant (k′1, s ) was much greater than the slow sorption rate constant (k′2, s ). Effect of aging on the desorption kinetics was also analyzed. The f′1, d in MTCFOKM decreased but the slow desorption fraction (f′2, d ) increased with aging, indicating that slow desorption is directly related to aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Ibbotson and A. O. Ibhadon, Mar. Pollut. Bull., 60, 1136 (2010).

    Article  CAS  Google Scholar 

  2. K. Grice, B. Nabbefeld and F. Maslen, Organic Geochem., 38, 1795 (2007).

    Article  CAS  Google Scholar 

  3. G. P. Yang and X. Zheng, Environ. Toxicol. Chem., 29, 2169 (2010).

    Article  CAS  Google Scholar 

  4. H. P. H. Arp, G.D. Breedveld and G. Cornelissen, Environ. Sci. Technol., 43, 5576 (2009).

    Article  CAS  Google Scholar 

  5. W. P. Ball and P.V. Roberts, Environ. Sci. Technol., 25, 1223 (1991).

    Article  CAS  Google Scholar 

  6. E. Eek, G. Cornelissen and G. D. Breedveld, Environ. Sci. Technol., 44, 6752 (2010).

    Article  CAS  Google Scholar 

  7. W. Wu and H. Sun, Chemosphere, 81, 961 (2010).

    Article  CAS  Google Scholar 

  8. D. Kupryianchyk, M. I. Rakowska, J. T. C. Grotenhuis and A. A. Koelmans, Environ. Pollut., 161, 23 (2012).

    Article  CAS  Google Scholar 

  9. X. Xia, J. Zhang, Y. Sha and J. Li, J. Environ. Monit., 14, 258 (2012).

    Article  CAS  Google Scholar 

  10. J. Zhang and M. He, J. Hazard. Mater., 184, 432 (2010).

    Article  CAS  Google Scholar 

  11. G. P. Yang, H.Y. Ding, X.Y. Cao and Q.Y. Ding, Mar. Pollut. Bull., 62, 2362 (2011).

    Article  CAS  Google Scholar 

  12. W. Zheng, J. Lichwa and T. Yan, Chemosphere, 84, 376 (2011).

    Article  CAS  Google Scholar 

  13. A. T. Kan, G. Fu, M. A. Hunter and M. B. Tomson, Environ. Sci. Technol., 31, 2176 (1997).

    Article  CAS  Google Scholar 

  14. A. A. Koelsmans, A. Poot, H. J. De Lange, I. Velzeboer, J. Harmsen and P. C. M. van Noort, Environ. Sci. Technol., 44, 3014 (2010).

    Article  Google Scholar 

  15. D. Werner, H. K. Karapanagioti and D. A. Sabatini, J. Contam. Hydro., 129–130, 70 (2012).

    Article  Google Scholar 

  16. L. Tremblay, S. D. Kohl, J.A. Rice and J. P. Gagne, Mar. Chem., 96, 21 (2005).

    Article  CAS  Google Scholar 

  17. N. Ni and S. H. Yalkowsky, Int. J. Pharm., 26, 167 (2003).

    Article  Google Scholar 

  18. J. McLachlan, Can. J. Microbiol., 10, 769 (1964).

    Article  CAS  Google Scholar 

  19. J. C. Goldman and J. J. McCarthy, Limnology Oceanogr., 23, 695 (1978).

    Article  CAS  Google Scholar 

  20. V. A. Nzengung, P. Nkedi-Kizza, R. E. Jessup and E. A. Voudrias, Environ. Sci. Technol., 31, 1470 (1997).

    Article  CAS  Google Scholar 

  21. J.H. Kim, W. S. Shin, Y.H. Kim, S. J. Choi, W.K. Jo and D. I. Song, Korean J. Chem. Eng., 22, 857 (2005).

    Article  CAS  Google Scholar 

  22. S. Oh, Q. Wu, D. I. Song and W. S. Shin, J. Soil Groundwater Env., 16, 79 (2011).

    Google Scholar 

  23. Y. Ho and G. McKay, Water Res., 34, 735 (2000).

    Article  CAS  Google Scholar 

  24. R. A. Shawabkeh and M. F. Tutunji, Appl. Clay Sci., 24, 111 (2003).

    Article  CAS  Google Scholar 

  25. S. Oh and W. S. Shin, J. Environ. Sci. Health A, 45, 1150 (2010).

    Article  CAS  Google Scholar 

  26. G. Cornellison, K. A. Hassell, P.C. M. van Noorst, R. Kraaij, P. J. van Erkeren, C. Dijkema, P.A. de Jager and H. A. J. Govers, Environ. Pollut., 108, 69 (1997).

    Article  Google Scholar 

  27. G. Cornellison, H. Rigterink, B. A. Vrind, D. Th. E. M. ten Hulscher, M. M.A. Ferdinary and P. C. M. van Noorst, Chemosphere, 35, 2405 (1997).

    Article  Google Scholar 

  28. D. R. Opdyke and R. C. Loehr, Environ. Sci. Technol., 33, 1193 (1999).

    Article  CAS  Google Scholar 

  29. G. Cornellison, P. C. M. van Noorst and H. A. J. Govers, Environ. Sci. Technol., 32, 3124 (1998).

    Article  Google Scholar 

  30. A. T. Kan, W. Chen and M.B. Tomson, Environ. Pollut., 108, 81 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Won Sik Shin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oh, S., Wang, Q., Shin, W.S. et al. Sorption and desorption kinetics of PAHs in coastal sediment. Korean J. Chem. Eng. 30, 145–153 (2013). https://doi.org/10.1007/s11814-012-0101-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-012-0101-5

Key words

Navigation