Skip to main content
Log in

Elucidation of morphological and optoelectronic properties of highly crystalline chalcopyrite (CuInSe2) nanoparticles synthesized via hot injection route

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

CuInSe2 (CIS) nanoparticles have been prepared by the hot-injection method with sizes ∼25 nm, and the thermal annealing influence on the size, morphology and optoelectronic properties of crystalline CuInSe2 nanoparticles has been elucidated. Microstructural analysis of synthesized nanoparticles was performed by various characterization methods including high-resolution transmission electron microscopy (HR-TEM), Scanning TEM (STEM), Xray diffraction, X-ray photoelectron spectroscopy (XPS) and photoluminescence (PL) spectroscopy. The fast Fourier transform (FFT) pattern of HR-TEM image of annealed CuInSe2 nanoparticles illustrates that the particles have quasisingle crystal tetragonal structure, as also confirmed by the XRD pattern. The HR-TEM image clearly shows the fringe widths are in order without any defect with 0.32 nm. Microstructural analysis results clearly indicate that the synthesized and air-annealed nanoparticles are in highly crystalline state with near stoichiometric atomic composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Cahen, J.-M. Gilet, C. Schmitz, L. Chernyak, K. Gartsman and A. Jakubowicz, Science, 258, 271 (1992).

    Article  CAS  Google Scholar 

  2. J.-F. Guillemoles, U.R. L. Kronik, H.-W. Schock and D. Cahen, Adv. Mater., 11, 957 (1999).

    Article  CAS  Google Scholar 

  3. K. Ramanathan, M. A. Contreras, C. L. Perkins, S. Asher, F. S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J. Ward and A. Duda, Progress in Photovoltaics, 11, 225 (2003).

    Article  CAS  Google Scholar 

  4. Y.Y. Han and C.Y. Tsong, J. Phys. Chem. B, 110, 17370 (2006).

    Article  Google Scholar 

  5. L. Stolt, J. Hedstrom, J. Kessler, M. Ruckh, K.-O. Velthaus and H.-W. Schock, Appl. Phys. Lett., 62, 597 (1993).

    Article  CAS  Google Scholar 

  6. D. L. Schulz, C. J. Curtis, F.A. Flitton, H. Weisner, J. Keane, R. J. Matson, M. J. Jones, P.A. Parilla, R. Noufi and D. S. Ginley, J. Electron. Mater., 27, 433 (1998).

    Article  CAS  Google Scholar 

  7. H. Ye, H. S. Park, V. A. Akhavan, B.W. Goodfellow, M.G. Panthani, B. A. Korgel and A. J. Bard, J. Phys. Chem. C, 115, 234 (2011).

    Article  CAS  Google Scholar 

  8. S. L. Castro, S.G. Bailey, R. P. Raffaelle, K. K. Banger and A. F. Hepp, Chem. Mater., 15, 3142 (2003).

    Article  CAS  Google Scholar 

  9. J. F. Guillenmoles, A. Lusson, P. Cowache, S. Massaccesi, J. Vedel and D. Lincot, Adv. Mater., 6, 376 (1994).

    Article  Google Scholar 

  10. M.A. Malik, P. O’Brien and N. Revaprasadu, Adv. Mater., 11, 1441 (1999).

    Article  CAS  Google Scholar 

  11. H. Peng, D. T. Schoen, S. Meister, X. F. Zhang and Y. Cui, J. Am. Chem. Soc., 129, 34 (2007).

    Article  CAS  Google Scholar 

  12. M. Powalla and B. Dimmler, Thin Solid Films, 361–362, 540 (2000).

    Article  Google Scholar 

  13. I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J, Scharf, C. L. Perkins, B. To and R. Noufi, Prog. PhotoVoltaics Res. Appl., 16, 235 (2008).

    Article  CAS  Google Scholar 

  14. M. A. Contreras, B. Egaas, K. Ramanathan, J. Hiltner, A. Swartzlander, F. Hasoon and R. Noufi, Prog. PhotoVoltaics Res. Appl., 7, 311 (1999).

    Article  CAS  Google Scholar 

  15. H.-W. Schock and R. Noufi, Prog. PhotoVoltaics Res. Appl., 8, 151 (2000).

    Article  CAS  Google Scholar 

  16. C. Eberspacher, K. L. Pauls and J. P. Serra, Mater. Res. Soc. Symp. Proc., 763, B8.27.1 (2003).

    Google Scholar 

  17. A. P. Kumar and K.V. Reddy, Thin Solid Films, 304, 365 (1997).

    Article  CAS  Google Scholar 

  18. I. Gur, N.A. Fromer, M. L. Geier and A. P. Alivisatos, Science, 310, 462 (2005).

    Article  CAS  Google Scholar 

  19. Y. Wu, C. Wadia, W. Ma, B. Sadtler and A. P. Alivisatos, Nano Lett., 8, 2551 (2008).

    Article  CAS  Google Scholar 

  20. S. Dayal, N. Kopidakis, D. C. Olson, D. S. Ginley and G. Rumbles, J. Am. Chem. Soc., 10, 239 (2010).

    CAS  Google Scholar 

  21. C. B. Murray, D. J. Norris and M.G. Bawendi, J. Am. Chem. Soc., 115, 8706 (1993).

    Article  CAS  Google Scholar 

  22. O. I. Micic, C. J. Curtis, K. M. Jones, J. R. Sprague and A. J. Nozik, J. Phys. Chem., 98, 4966 (1994).

    Article  CAS  Google Scholar 

  23. A. Ghezelbash and A. Korgel, Langmuir, 21, 9451 (2005).

    Article  CAS  Google Scholar 

  24. J. Xu, J.-P. Ge and Y.-D. Li, J. Phys. Chem. B, 110, 2497 (2006).

    Article  CAS  Google Scholar 

  25. J. D. Holmes, K. J. Ziegler, R.C. Doty, L. E. Pell, K. P. Johnston and B. A. Korgel, J. Am. Chem. Soc., 123, 3743 (2001).

    Article  CAS  Google Scholar 

  26. X. Lu, B. A. Korgel and K. P. Johnston, Chem. Mater., 17, 6479 (2005).

    Article  CAS  Google Scholar 

  27. C. Eberspacher, K. Pauls and J. Serra, 28 th IEEE Photovoltaic Specialist Conference, IEEE, 517 (2000).

  28. S.-H. Choi, E.-G. Kim and T. Hyeon, J. Am. Chem. Soc., 128, 2520 (2006).

    Article  CAS  Google Scholar 

  29. O. L. Krivanek, P.D. Nellist, N. Dellby, M. F. Murfitt and Z. Szilagyi, Ultramicroscopy, 96, 229 (2003).

    Article  CAS  Google Scholar 

  30. A.V. Kadavanich, T. C. Kippeny, M.M. Erwin, S. J. Pennycook and S. J. Rosenthal, J. Phys. Chem. B, 105, 361 (2001).

    Article  CAS  Google Scholar 

  31. P. D. Nellist and S. J. Pennycook, Ultramicroscopy, 78(1–4), 111 (1999).

    Article  CAS  Google Scholar 

  32. S. J. Pennycook and P. D. Nellist, Z-Contrast Scanning Transmission Electron Microscopy, in: D. Rickerby, G. Valdre, U. Valdre (Eds.), Impact of Electron Scanning Probe Microscopy on Materials Research, Kluwer Academic Publishers, The Netherlands (1999).

    Google Scholar 

  33. B. Li, Y. Xie, J. Huang and Y. Qian, Adv. Mater., 11, 1456 (1999).

    Article  CAS  Google Scholar 

  34. S. Chichibu, T. Mizutani, K. Murakami, T. Shioda and T. Kurafuji, J. Appl. Phys., 83, 3678 (1998).

    Article  CAS  Google Scholar 

  35. Q. Guo, S. J. Kim, M. Kar, W. N. Shafarman, R.W. Birkmire, E. A. Stach, R. Agrawal and H.W. Hillhouse, Nano Lett., 8, 2982 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chinho Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farva, U., Khan, M.A. & Park, C. Elucidation of morphological and optoelectronic properties of highly crystalline chalcopyrite (CuInSe2) nanoparticles synthesized via hot injection route. Korean J. Chem. Eng. 29, 1453–1458 (2012). https://doi.org/10.1007/s11814-012-0026-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-012-0026-z

Key words

Navigation