Skip to main content
Log in

A Preliminary Investigation of Arctic Sea Ice Negative Freeboard from in-situ Observations and Radar Altimetry

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

The negative freeboard of sea ice (i.e., the height of ice surface below sea level) with subsequent flooding is widespread in the Southern Ocean, as opposed to the Arctic, due to the relatively thicker ice and thinner snow. In this study, we used the observations of snow and ice thickness from 103 ice mass balance buoys (IMBs) and NASA Operation IceBridge Aircraft Missions to investigate the spatial distribution of negative freeboard of Arctic sea ice. The Result showed that seven IMBs recorded negative freeboards, which were sporadically located in the seas around Northeast Greenland, the Central Arctic Ocean, and the marginal areas of the Chukchi-Beaufort Sea. The observed maximum values of negative freeboard could reach −0.12 m in the seas around Northeast Greenland. The observations from IceBridge campaigns also revealed negative freeboard comparable to those of IMBs in the seas around North Greenland and the Beaufort Sea. We further investigated the large-scale distribution of negative freeboard using NASA CryoSat-2 radar altimeter data, and the result indicates that except for the negative freeboard areas observed by IMBs and IceBridge, there are negative freeboards in other marginal seas of the Arctic Ocean. However, the comparison of the satellite data with the IMB data and IceBridge data shows that the Cryosat-2 data generally overestimate the extent and magnitude of the negative freeboard in the Arctic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackley, S. F., Lange, M. A., and Wadhams, P., 1990. Snow cover effects on Antarctic sea ice thickness. In: Sea Ice Properties and Processes: Proceeding of the W. F. Weeks Sea Ice Symposium. Ackley, S. F., and Weeks, W. F., eds., Cold Regions Research and Engineering Laboratory, Hanover, 16–21.

    Google Scholar 

  • Armitage, T. W. K., and Ridout, A. L., 2015. Arctic sea ice freeboard from AltiKa and comparison with CryoSat-2 and Operation IceBridge. Geophysical Research Letters, 42(16): 6724–6731.

    Article  Google Scholar 

  • Arndt, S., Meiners, K. M., Ricker, R., Krumpen, T., Katlein, C., and Nicolaus, M., 2017. Influence of snow depth and surface flooding on light transmission through Antarctic pack ice. Journal of Geophysical Research: Oceans, 122(3): 2108–2119.

    Google Scholar 

  • Divine, D., King, J., Rösel, A., Itkin, P., Haapala, J., and Gerland, S., 2017. N-ICE2015 Sea-ice and snow surface elevation from laser leveling exercises (Data set). Norwegian Polar Institute. https://doi.org/10.21334/npolar.2017.69ec354f.

  • Eicken, H., 1994. Structure of under-ice melt ponds in the central Arctic and their effect on the sea-ice cover. Limnology and Oceanography, 39(3): 682–694.

    Article  Google Scholar 

  • Fernández-Méndez, M., Olsen, L. M., Kauko, H. M., Meyer, A., Rösel, A., Merkouriadi, I., Mundy, C. J., Ehn, J. K., Johansson, A. M., Wagner, P. M., Ervik, Å., Sorrell, B. K., Duarte, P., Wold, A., Hop, H., and Assmy, P., 2018. Algal hot spots in a changing Arctic Ocean: Sea-ice ridges and the snow-ice interface. Frontiers in Marine Science, 5: 1–22.

    Article  Google Scholar 

  • Gallet, J. C., Merkouriadi, I., Liston, G. E., Polashenski, C., Hudson, S., Rösel, A., and Gerland, S., 2017. Spring snow conditions on Arctic sea ice North of Svalbard, during the Norwegian Young Sea ICE (N-ICE2015) expedition. Journal of Geophysical Research: Atmospheres, 122: 10820–10836.

    Google Scholar 

  • Granskog, M. A., 2004. Seasonal development of the properties and composition of landfast sea ice in the Gulf of Finland, the Baltic Sea. Journal of Geophysical Research, 109(C2): C02020.

    Article  Google Scholar 

  • Granskog, M. A., Rösel, A., Dodd, P. A., Divine, D., Gerland, S., Martma, T., and Leng, M. J., 2017. Snow contribution to first-year and second-year Arctic sea ice mass balance North of Svalbard. Journal of Geophysical Research: Oceans, 122(3): 2539–2549.

    Google Scholar 

  • Haas, C., Thomas, D. N., and Bareiss, J., 2001. Surface properties and processes of perennial Antarctic sea ice in summer. Journal of Glaciology, 47(159): 613–625.

    Article  Google Scholar 

  • Hansen, E., Gerland, S., Granskog, M. A., Pavlova, O., Renner, A. H. H., Haapala, J., Løyning, T. B., and Tschudi, M., 2013. Thinning of Arctic sea ice observed in Fram Strait: 1990–2011. Journal of Geophysical Research: Oceans, 118(10): 5202–5221.

    Google Scholar 

  • Jeffries, M. O., Shaw, R. A., Morris, K., Veazey, A. L., and Krouse, H. R., 1994. Crystal structure, stable isotopes (δ18O), and development of sea ice in the Ross, Amundsen, and Bellingshausen Seas, Antarctica. Journal of Geophysical Research, 99(C1): 985–995.

    Article  Google Scholar 

  • Kawamura, T., Ohshima, K. I., Takizawa, T., and Ushio, S., 1997. Physical, structural, and isotopic characteristics and growth processes of fast sea ice in Lützow-Holm Bay, Antarctica. Journal of Geophysical Research: Oceans, 102(C2): 3345–3355.

    Article  Google Scholar 

  • Kawamura, T., Shirasawa, K., Ishikawa, N., Lindfors, A., Rasmus, K., Granskog, M. A., Ehn, J., Leppäranta, M., Martma, T., and Vaikmäe, R., 2001. Time-series observations of the structure and properties of brackish ice in the Gulf of Finland. Annals of Glaciology, 33(1): 1–4.

    Article  Google Scholar 

  • King, J., Skourup, H., Hvidegaard, S. M., Rösel, A., Gerland, S., Spreen, G., Polashenski, C., Helm, V., and Liston, G. E., 2018. Comparison of freeboard retrieval and ice thickness calculation from ALS, ASIRAS, and CryoSat-2 in the Norwegian Arctic to field measurements made during the N-ICE2015 expedition. Journal of Geophysical Research: Oceans, 123(2): 1123–1141.

    Google Scholar 

  • Kurtz, N. T., and Harbeck, J., 2017. CryoSat-2 level-4 sea ice elevation, freeboard, and thickness, version 1. NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, Colorado, https://doi.org/10.5067/96JO0KIFDAS8.

    Google Scholar 

  • Kurtz, N. T., Farrell, S. L., Studinger, M., Galin, N., Harbeck, J. P., Lindsay, R., Onana, V. D., Panzer, B., and Sonntag, J. G., 2013. Sea ice thickness, freeboard, and snow depth products from Operation IceBridge airborne data. The Cryosphere, 7(4): 1035–1056.

    Article  Google Scholar 

  • Kurtz, N. T., Galin, N., and Studinger, M., 2014. An improved CryoSat-2 sea ice freeboard retrieval algorithm through the use of waveform fitting. The Cryosphere, 8(4): 1217–1237.

    Article  Google Scholar 

  • Kurtz, N. T., Studinger, M., Harbeck, J., Onana, V., and Yi, D., 2015. IceBridge L4 sea ice freeboard, snow depth, and thickness, version 1. NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, Colorado, https://doi.org/10.5067/G519SHCKWQV6.

    Google Scholar 

  • Kwok, R., and Rothrock, D. A., 2009. Decline in Arctic sea ice thickness from submarine and ICES at records: 1958–2008. Geophysical Research Letters, 36(15): 1–5.

    Article  Google Scholar 

  • Lange, M. A., Schlosser, P., Ackley, S. F., Wadhams, P., and Dieckmann, G. S., 1990. 18O Concentrations in sea ice of the Weddell Sea, Antarctica. Journal of Glaciology, 36(124): 315–323.

    Article  Google Scholar 

  • Laxon, S., Peacock, N., and Smith, D., 2003. High interannual variability of sea ice thickness in the Arctic region. Nature, 425(6961): 947–950.

    Article  Google Scholar 

  • Laxon, S. W., Giles, K. A., Ridout, A. L., Wingham, D. J., Willatt, R., Cullen, R., Kwok, R., Schweiger, A., Zhang, J., Haas, C., Hendricks, S., Krishfield, R., Kurtz, N., Farrell, S., and Davidson, M., 2013. CryoSat-2 estimates of Arctic sea ice thickness and volume. Geophysical Research Letters, 40(4): 732–737.

    Article  Google Scholar 

  • Lindsay, R., and Schweiger, A., 2015. Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations. The Cryosphere, 9(1): 269–283.

    Article  Google Scholar 

  • Merkouriadi, I., Cheng, B., Graham, R. M., Rösel, A., and Granskog, M. A., 2017a. Critical role of snow on sea ice growth in the Atlantic Sector of the Arctic Ocean. Geophysical Research Letters, 44(20): 10479–10485.

    Article  Google Scholar 

  • Merkouriadi, I., Gallet, J. C., Liston, G. E., Polashenski, C., Hudson, S., Rösel, A., and Gerland, S., 2017b. Winter snow conditions on Arctic sea ice North of Svalbard during the Norwegian Young Sea ICE (N-ICE2015) expedition. Journal of Geophysical Research: Atmospheres, 122(20): 10837–10854.

    Google Scholar 

  • Nandan, V., Geldsetzer, T., Yackel, J., Mahmud, M., Scharien, R., Howell, S., King, J., Ricker, R., and Else, B., 2017. Effect of snow salinity on CryoSat-2 Arctic first-year sea ice freeboard measurements. Geophysical Research Letters, 44(20): 10419–10426.

    Article  Google Scholar 

  • Perovich, D., Richter-Menge, J., and Polashenski, C., 2017. Observing and understanding climate change: Monitoring the mass balance, motion, and thickness of Arctic sea ice. http://imb-crrel-dartmouth.org.

  • Provost, C., Sennéchael, N., Miguet, J., Itkin, P., Rösel, A., Koenig, Z., Villacieros-Robineau, N., and Granskog, M. A., 2017. Observations of flooding and snow-ice formation in a thinner Arctic sea-ice regime during the N-ICE2015 campaign: Influence of basal ice melt and storms. Journal of Geophysical Research: Oceans, 122(9): 7115–7134.

    Google Scholar 

  • Rösel, A., and King, J., 2017. N-ICE2015 Ice thickness, snow thickness, and freeboard from thickness drillings (Data set). Norwegian Polar Institute. https://doi.org/10.21334/npolar.2017.25f70db1.

  • Rösel, A., Itkin, P., King, J., Divine, D., Wang, C., Granskog, M. A., Krumpen, T., and Gerland, S., 2018. Thin sea ice, thick snow, and widespread negative freeboard observed During N-ICE2015 North of Svalbard. Journal of Geophysical Research: Oceans, 123(2): 1156–1176.

    Google Scholar 

  • Renner, A. H. H., Gerland, S., Haas, C., Spreen, G., Beckers, J. F., Hansen, E., Nicolaus, M., and Goodwin, H., 2014. Evidence of Arctic sea ice thinning from direct observations. Geophysical Research Letters, 41(14): 5029–5036.

    Article  Google Scholar 

  • Ricker, R., Hendricks, S., Helm, V., Skourup, H., and Davidson, M., 2014. Sensitivity of CryoSat-2 Arctic sea-ice freeboard and thickness on radar-waveform interpretation. The Cryosphere, 8(4): 1607–1622.

    Article  Google Scholar 

  • Ricker, R., Hendricks, S., Perovich, D. K., Helm, V., and Gerdes, R., 2015. Impact of snow accumulation on CryoSat-2 range retrievals over Arctic sea ice: An observational approach with buoy data. Geophysical Research Letters, 42(11): 4447–4455.

    Article  Google Scholar 

  • Sturm, M., and Massom, R., 2010. Snow on sea ice. In: Sea Ice. Thomas, D., and Dieckmann, G., eds., Wiley-Black-Well, Chichester, 153–204.

    Google Scholar 

  • Ukita, J., Kawamura, T., Tanaka, N., Toyota, T., and Wakatsuchi, M., 2000. Physical and stable isotopic properties and growth processes of sea ice collected in the southern Sea of Okhotsk. Journal of Geophysical Research, 105(C9): 22083–22093.

    Article  Google Scholar 

  • Uusikivi, J., Granskog, M. A., and Sonninen, E., 2011. Meteoric ice contribution and influence of weather on landfast ice growth in the Gulf of Finland, Baltic Sea. Annals of Glaciology, 52(57): 91–96.

    Article  Google Scholar 

  • Vihma, T., Pirazzini, R., Renfrew, I. A., Sedlar, J., Tjernström, M., Nygård, T., Fer, I., Lüpkes, C., Notz, D., Weiss, J., Marsan, D., Cheng, B., Birnbaum, G., Gerland, S., Chechin, D., and Gascard, J. C., 2013. Advances in understanding and parameterization of small-scale physical processes in the marine Arctic climate system: A review. Atmospheric Chemistry and Physics Discussions, 13(12): 32703–32816.

    Google Scholar 

  • Wang, C., Graham, R. M., Wang, K., Gerland, S., and Granskog, M. A., 2019. Comparison of ERA5 and ERA-Interim near-surface air temperature, snowfall and precipitation over Arctic sea ice: Effects on sea ice thermodynamics and evolution. The Cryosphere, 13: 1661–1679.

    Article  Google Scholar 

  • Webster, M. A., Rigor, I. G., Nghiem, S. V., Kurtz, N. T., Farrell, S. L., Perovich, D. K., and Sturm, M., 2014. Interdecadal changes in snow depth on Arctic sea ice. Journal of Geophysical Research: Oceans, 119(8): 5395–5406.

    Google Scholar 

  • Willatt, R., Laxon, S., Giles, K., Cullen, R., Haas, C., and Helm, V., 2011. Ku-band radar penetration into snow cover on Arctic sea ice using airborne data. Annals of Glaciology, 52(57): 197–205.

    Article  Google Scholar 

  • Xia, W., and Xie, H., 2017. Assessing three waveform retrackers on sea ice freeboard retrieval from Cryosat-2 using operation IceBridge Airborne altimetry datasets. Remote Sensing of Environment, 204: 456–471.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2018YF C1406104); and the National Natural Science Foundation of China (Nos. 41425003 and 41971084). We would like to thank the NSIDC and the Norwegian Polar Data Center for providing IceBridge, CryoSat-2 data and N-ICE2015 data, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tingfeng Dou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Dou, T. & Xiao, C. A Preliminary Investigation of Arctic Sea Ice Negative Freeboard from in-situ Observations and Radar Altimetry. J. Ocean Univ. China 20, 307–314 (2021). https://doi.org/10.1007/s11802-021-4380-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-021-4380-5

Key words

Navigation