Skip to main content
Log in

The Effect of Organic Carbon on Soil Bacterial Diversity in an Antarctic Lake Region

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

This study assessed the effects of changes in organic carbon content on soil bacterial community composition and diversity in the Antarctic Fildes Peninsula. 16S rRNA gene sequencing was performed to investigate bacterial community composition. Firstly, we found that organic carbon (OrC) and nutrients showed an increasing trend in the lake area. Secondly, soil geochemistry changes affected microbial composition in the soil. Specifically, we found 3416 operational taxonomical units (OTUs) in 300 genera in five main phyla: Proteobacteria, Actinobacteria, Acidobacteria, Chloroflexi, and Bacteroidetes. Although the diversity was similar among the four sites, the composition was different. Among them, Hungateii content changed very significantly, from 16.67% to 33.33%. Canonical correspondence analysis showed that most measured geochemical factors were relevant in structuring microbiomes, and organic carbon concentration showed the highest correlation, followed by NO3-N. Hungateii was significantly correlated with the content of organic carbon. Our finding suggested organic carbon played an important role in soil bacterial communities of the Antarctic coastal lake region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adrian, R., O’Reilly, C. M., Zagarese, H., Baines, S. B., Hessen, D. O., Keller, W., Livingstone, D. M., Sommaruga, R., Straile, D., and Donk, E. V., 2009. Lakes as sentinels of climate change. Limnology & Oceanography, 54 (6 part 2): 2283–2297.

    Article  Google Scholar 

  • Berg, G., and Smalla, K., 2009. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiology Ecology, 68 (1): 1–13.

    Article  Google Scholar 

  • Bölter, M., 2011. Soil development and soil biology on King George Island, Maritime Antarctic. Polish Polar Research, 32 (2): 105–116.

    Article  Google Scholar 

  • Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., Fierer, N., Peña, A. G., Goodrich, J. K., Gordon, J. I., Huttley, G. A., Kelley, S. T., Knights, D., Koenig, J. E., Ley, R. E., Lozupone, C. A., McDonald, D., Muegge, B. D., Pirrung, M., Reeder, J., Sevinsky, J. R., Turnbaugh, P. J., Walters, W. A., Widmann, J., Yatsunenko, T., Zaneveld, J., and Knight, R., 2010a. QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7 (5): 335–336.

    Article  Google Scholar 

  • Caruso, T., Trokhymets, V., Bargagli, R., and Convey, P., 2013. Biotic interactions as a structuring force in soil communities: Evidence from the micro-arthropods of an Antarctic moss model system. Oecologia, 172 (2): 495–503.

    Article  Google Scholar 

  • Chotte, J. L., Ladd, J. N., and Amato, M., 1998. Sites of microbial assimilation, and turnover of soluble and particulate 14C-labelled substrates decomposing in a clay soil. Soil Biology & Biochemistry, 30 (2): 205–218.

    Article  Google Scholar 

  • Edgar, R. C., 2013. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 10: 996–998.

    Article  Google Scholar 

  • Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C., and Knight, R., 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 27 (16): 2194–2200.

    Article  Google Scholar 

  • Edwards, A. C., Scalenghe, R., and Freppaz, M., 2007. Changes in the seasonal snow cover of alpine regions and its effect on soil processes: A review. Quaternary International, 162 (1): 172–181.

    Article  Google Scholar 

  • Goldfarb, K. C., Karaoz, U., Hanson, C. A., Santee, C. A., Bradford, M. A., Treseder, K. K., Wallenstein, M. D., and Brodie, E. L., 2011. Differential growth responses of soil bacterial taxa to carbon substrates of varying chemical recalcitrance. Frontiers in Microbiology, 2 (1): 94.

    Google Scholar 

  • Haas, B. J., Gevers, D., Earl, A. M., Feldgarden, M., Ward, D. V., Giannoukos, G., Ciulla, D., Tabbaa, D., Highlander, S. K., Sodergren, E., Methé, B., DeSantis, T. Z., Petrosino, J. F.

  • Knight, R., and Birren, B. W., 2011. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrose-quenced PCR amplicons. Genome Research, 21 (3): 494–504.

    Article  Google Scholar 

  • Hogg, I. D., Cary, S. C., Convey, P., Newsham, K. K., O’Donnell, A. G., Adams, B. J., Aislabie, J., Frati, F., Stevens, M. I., and Wall, D. H., 2006. Biotic interactions in Antarctic terrestrial ecosystems: Are they a factor. Soil Biology & Biochemistry, 38 (10): 3035–3040.

    Article  Google Scholar 

  • Hu, L., Shi, X., Yu, Z., Lin, T., Wang, H., Ma, D., Guo, Z., and Yang, Z., 2012. Distribution of sedimentary organic matter in estuarine-inner shelf regions of the East China Sea: Implications for hydrodynamic forces and anthropogenic impact. Marine Chemistry, 142–144 (11): 29–40.

    Article  Google Scholar 

  • Hughes, K. A., Convey, P., Ziska, L. H., and Dukes, J. S., 2014. Non-native species in Antarctic terrestrial environments: The impacts of climate change and human activity. In: Invasive Species & Global Climate Change, Ziska, L., ed., 81–100, DOI: https://doi.org/10.1079/9781780641645.0081.

  • Jeanette, B., Brandt, K. K., Al-Soud, W. A., Holm, P. E., Hansen, L. H., Srensen, S. R. J., and Ole, N., 2012. Selection for Cutolerant bacterial communities with altered composition, but unaltered richness, via long-term Cu exposure. Applied & Environmental Microbiology, 78 (20): 7438–7446.

    Article  Google Scholar 

  • Jones, H. G., 1991. Snow chemistry and biological activity: A particular perspective on nutrient cycling. NATO ASI Series, 28: 173–228.

    Google Scholar 

  • Jones, H. G., 2010. The ecology of snow-covered systems: A brief overview of nutrient cycling and life in the cold. Hydrological Processes, 13 (14–15): 2135–2147.

    Google Scholar 

  • Kuramae, E. E., Yergeau, E., Wong, L. C., Pijl, A. S., van Veen, J. A., and Kowalchuk, G. A., 2015. Soil characteristics more strongly influence soil bacterial communities than land-use type. Fems Microbiology Ecology, 79 (1): 12–24.

    Article  Google Scholar 

  • Ladd, J. N., Gestel, M. V., Monrozier, L. J., and Amato, M., 1996. Distribution of organic 14C and 15N in particle-size fractions of soils incubated with 14C, 15N-labelled glucose/NH4, and legume and wheat straw residues. Soil Biology & Biochemistry, 28 (7): 893–905.

    Article  Google Scholar 

  • Lagomarsino, A., Grego, S., and Kandeler, E., 2012. Soil organic carbon distribution drives microbial activity and functional diversity in particle and aggregate-size fractions. Pedobiologia, 55 (2): 101–110.

    Article  Google Scholar 

  • Lavian, I. L., Vishnevetsky, S., Barness, G., and Steinberger, Y., 2001. Soil microbial community and bacterial functional diversity at Machu Picchu, King George Island, Antarctica. Polar Biology, 24 (6): 411–416.

    Article  Google Scholar 

  • Liu, J., Zang, J., Zhao, C., Yu, Z., Xu, B., Li, J., and Ran, X., 2016. Phosphorus speciation, transformation, and preservation in the coastal area of Rushan Bay. Science of the Total Environment, 565: 258–270.

    Article  Google Scholar 

  • Magoä, T., and Salzberg, S. L., 2011. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 27 (21): 2957–2963.

    Article  Google Scholar 

  • Marilley, L., Vogt, G., Blanc, M., and Aragno, M., 1998. Bacterial diversity in the bulk soil and rhizosphere fractions of Lolium perenne and Trifolium repens as revealed by PCR restriction analysis of 16S rDNA. Plant & Soil, 198 (2): 219–224.

    Article  Google Scholar 

  • Michelsen, C. F., Pedas, P., Glaring, M. A., Schjoerring, J. K., and Stougaard, P., 2014. Bacterial diversity in Greenlandic soils as affected by potato cropping and inorganic versus organic fertilization. Polar Biology, 37 (1): 61–71.

    Article  Google Scholar 

  • Monserrate, E., Leschine, S. B., and Canale-Parola, E., 2001. Clostridium hungatei sp. nov., a mesophilic, N2-fixing celluolytic bacterium isolated from soil. International Journal of Systematic & Evolutionary Microbiology, 51 (1): 123–132.

    Article  Google Scholar 

  • Nicolas, J. P., Vogelmann, A. M., Scott, R. C., Wilson, A. B., Cadeddu, M. P., Bromwich, D. H., Verlinde, J., Lubin, D., Russell, L. M., Jenkinson, C., Powers, H. H., Ryczek, M., Stone, G., and Wille, J. D., 2017. January 2016 extensive summer melt in West Antarctica favoured by strong El Niño. 8: 15799.

    Google Scholar 

  • Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’Hara, R. B., and Wagner, H., 2016. Vegan: Community Ecology Package [Software].

  • Oyugi, J. O., Qiu, H., and Safronetz, D., 2007. Global warming and the emergence of ancient pathogens in Canada’s Arctic regions. Medical Hypotheses, 68 (3): 709.

    Article  Google Scholar 

  • Parsons, A. N., Barrett, J. E., Wall, D. H., and Virginia, R. A., 2004. Soil carbon dioxide flux in antarctic dry valley ecosystems. Ecosystems, 7 (3): 286–295.

    Article  Google Scholar 

  • Pritchard, H. D., Ligtenberg, S. R. M., Fricker, H. A., Vaughan, D. G., van den Broeke, M. R., and Padman, L., 2012. Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature, 484 (7395): 502–505.

    Article  Google Scholar 

  • Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., and Glöckner, F. O., 2013. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research, 41 (Database issue): 590–596.

    Article  Google Scholar 

  • Santamans, A. C., Boluda, R., Picazo, A., Gil, C., Ramosmiras, J., Tejedo, P., Pertierra, L. R., Benayas, J., and Camacho, A., 2017. Soil features in rookeries of Antarctic penguins reveal sea to land biotransport of chemical pollutants. PLoS One, 12 (8): e0181901.

    Article  Google Scholar 

  • Schaefer, K., Lantuit, H., Romanovsky, V. E., Schuur, E. A. G., and Witt, R., 2014. The impact of the permafrost carbon feedback on global climate. Environmental Research Letters, 9 (8): 085003.

    Article  Google Scholar 

  • Schmidt, I. K., Jonasson, S., and Michelsen, A., 1999. Mineralization and microbial immobilization of N and P in arctic soils in relation to season, temperature and nutrient amendment. Applied Soil Ecology, 11 (2–3): 147–160.

    Article  Google Scholar 

  • Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S., and Huttenhower, C., 2011. Metagenomic biomarker discovery and explanation. Genome Biology, 12 (6): R60.

    Article  Google Scholar 

  • Staddon, W. J., Duchesne, L. C., and Trevors, J. T., 1997. Microbial diversity and community structure of postdisturbance forest soils as determined by sole-carbon-source utilization patterns. Microbial Ecology, 34 (2): 125–130.

    Article  Google Scholar 

  • Staddon, W. J., Trevors, J. T., Duchesne, L. C., and Colombo, C. A., 1998. Soil microbial diversity and community structure across a climatic gradient in western Canada. Biodiversity & Conservation, 7 (8): 1081–1092.

    Article  Google Scholar 

  • Steig, E. J., Schneider, D. P., Rutherford, S. D., Mann, M. E., Comiso, J. C., and Shindell, D. T., 2009. Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year. Nature, 457 (7228): 459–462.

    Article  Google Scholar 

  • Tierney, L., 2012. The R Statistical Computing Environment. Springer, New York, 1–21.

    Google Scholar 

  • Turner, J., Colwell, S. R., Marshall, G. J., Lachlan-Cope, T. A., Carleton, A. M., Jones, P. D., Lagun, V., Reid, P. A., and Iagovkina, S., 2005. Antarctic climate change during the last 50 years. International Journal of Climatology, 25 (3): 279–294.

    Article  Google Scholar 

  • Tytgat, B., Verleyen, E., Sweetlove, M., D’Hondt, S., Clercx, P., Ranst, E. V., Peeters, K., Roberts, S., Namsaraev, Z., and Wilmotte, A., 2016. Bacterial community composition in relation to bedrock type and macrobiota in soils from the Sør Rondane Mountains, East Antarctica. FEMS Microbiology Ecology, 92 (9): fiw126.

    Article  Google Scholar 

  • Van Horn, D. J., Okie, J. G., Buelow, H. N., Gooseff, M. N., Barrett, J. E., and Takacs-Vesbach, C. D., 2014. Soil microbial responses to increased moisture and organic resources along a salinity gradient in a polar desert. Applied Environmental Microbiology, 80 (10): 3034–3043.

    Article  Google Scholar 

  • Wang, N. F., Zhang, T., Zhang, F., Wang, E. T., He, J. F., Ding, H., Zhang, B. T., Liu, J., Ran, X. B., and Zang, J. Y., 2015. Diversity and structure of soil bacterial communities in the fildes region (maritime Antarctica) as revealed by 454 pyrosequencing. Frontiers in Microbiology, 6: 1188.

    Google Scholar 

  • Wang, Q., Garrity, G. M., Tiedje, J. M., and Cole, J. R., 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 73 (16): 5261–5267.

    Article  Google Scholar 

  • You, Y., Wang, J., Huang, X., Tang, Z., Liu, S., and Sun, O. J., 2014. Relating microbial community structure to functioning in forest soil organic carbon transformation and turnover. Ecology & Evolution, 4 (5): 633–647.

    Article  Google Scholar 

  • Zhang, C., Zhang, X. Y., Zou, H. T., Kou, L., Yang, Y., Wen, X. F., Li, S. G., Wang, H. M., and Sun, X. M., 2017. Contrasting effects of ammonium and nitrate additions on the biomass of soil microbial communities and enzyme activities in subtropical China. Biogeosciences, 14 (20): 4815–4827.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No. 41776198), the Basic Scientific Fund for National Public Research Institutes of China (No. GY0219Q10), and the Development Fund of Marine Bioactive Substances, SOA (No. MBSMAT-2017-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nengfei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, W., Wang, N., Ma, Y. et al. The Effect of Organic Carbon on Soil Bacterial Diversity in an Antarctic Lake Region. J. Ocean Univ. China 18, 1402–1410 (2019). https://doi.org/10.1007/s11802-019-4097-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-019-4097-x

Key words

Navigation