Skip to main content
Log in

Increasing winter conductive heat transfer in the Arctic sea-ice-covered areas: 1979–2014

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

Sea ice is a quite sensitive indicator in response to regional and global climate changes. Based on monthly mean Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS) sea ice thickness fields, we computed the conductive heat flux (CHF) in the Arctic Ocean in the four winter months (November–February) for a long period of 36 years (1979–2014). The calculated results for each month manifest the increasing extension of the domain with high CHF values since 1979 till 2014. In 2014, regions of roughly 90% of the central Arctic Ocean have been dominated by the CHF values larger than 18 W m−2 (November–December) and 12 W m−2 (January–February), especially significant in the shelf seas around the Arctic Ocean. Moreover, the population distribution frequency (PDF) patterns of the CHF with time show gradually peak shifting toward increased CHF values. The spatiotemporal patterns in terms of the trends in sea ice thickness and other three geophysical parameters, surface air temperature (SAT), sea ice thickness (SIT), and CHF, are well coupled. This suggests that the thinner sea ice cover preconditions for the more oceanic heat loss into atmosphere (as suggested by increased CHF values), which probably contributes to warmer atmosphere which in turn in the long run will cause thinner ice cover. This represents a positive feedback mechanism of which the overall effects would amplify the Arctic climate changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexeev, V. A., Ivanov, V. V., Kwok, R., and Smedsrud, L. H., 2013. North Atlantic warming and declining volume of arctic sea ice. Cryosphere Discussions, 7 (1): 245–265.

    Article  Google Scholar 

  • Döscher, R., Vihma, T., and Maksimovich, E., 2015. Recent advances in understanding the Arctic climate system state and change from a sea ice perspective: A review. Atmospheric Chemistry & Physics, 14 (7): 10929–10999.

    Google Scholar 

  • Fichefet, T., and Maqueda, M., 1997. Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. Journal of Geophysical Research: Oceans (1978–2012), 102 (C6): 12609–12646.

    Article  Google Scholar 

  • Giles, K. A., Laxon, S. W., and Ridout, A. L., 2008. Circumpolar thinning of Arctic sea ice following the 2007 record ice extent minimum. Geophysical Research Letters, 35 (22): L22502.

    Article  Google Scholar 

  • Holland, M. M., and Bitz, C. M., 2003. Polar amplification of climate change in coupled models. Climate Dynamics, 21 (3–4): 221–232.

    Article  Google Scholar 

  • Holland, M. M., Bitz, C. M., Hunke, E. C., Lipscomb, W. H., and Schramm, J. L., 2006. Influence of the sea ice thickness distribution on polar climate in CCSM3. Journal of Climate, 19 (11): 2398–2414.

    Article  Google Scholar 

  • Krishfield, R. A., and Perovich, D. K., 2005. Spatial and temporal variability of oceanic heat flux to the Arctic ice pack. Journal of Geophysical Research Oceans, 110 (7): 691–706.

    Google Scholar 

  • Kurtz, N. T., Farrell, S. L., Studinger, M., and Galin, N., 2012. Sea ice thickness, freeboard, and snow depth products from Operation IceBridge airborne data. Cryosphere Discussions, 6 (6): 4771–4827.

    Article  Google Scholar 

  • Kurtz, N. T., Galin, N., and Studinger, M., 2014. An improved CryoSat-2 sea ice freeboard and thickness retrieval algorithm through the use of waveform fitting. Cryosphere, 8 (1): 721–768.

    Article  Google Scholar 

  • Kurtz, N. T., Markus, T., Cavalieri, D. J., Sparling, L. C., Krabill, W. B., Gasiewski, A. J., and Sonntag, J. G., 2009. Estimation of sea ice thickness distributions through the combination of snow depth and satellite laser altimetry data. Journal of Geophysical Research Oceans, 114 (C10): 637–644.

    Google Scholar 

  • Kwok, R., Cunningham, G., Wensnahan, M., Rigor, I., Zwally, H., and Yi, D., 2009. Thinning and volume loss of the Arctic Ocean sea ice cover: 2003–2008. Journal of Geophysical Research: Oceans (1978–2012), 114: C07005.

    Article  Google Scholar 

  • Kwok, R., and Rothrock, D. A., 2009. Decline in Arctic sea ice thickness from submarine and ICESat records: 1958–2008. Geophysical Research Letters, 36 (15): L15501.

    Article  Google Scholar 

  • Kwok, R., and Untersteiner, N., 2011. The thinning of Arctic sea ice. Physics Today, 64 (4): 36–41.

    Article  Google Scholar 

  • Laxon, S. W., Giles, K. A., Ridout, A. L., Wingham, D. J., Rosemary, W., Robert, C., Ron, K., Axel, S., Zhang, J., and Christian, H., 2013. CryoSat-2 estimates of Arctic sea ice thickness and volume. Geophysical Research Letters, 40 (4): 732–737.

    Article  Google Scholar 

  • Lei, R., Li, N., Heil, P., Cheng, B., Zhang, Z., and Sun, B., 2014. Multiyear sea-ice thermal regimes and oceanic heat flux derived from an ice mass balance buoy in the Arctic Ocean. Journal Geophysical Research: Oceans, 119: 537–547.

    Google Scholar 

  • Lei, R., Xie, H., Wang, J., Leppäranta, M., Jónsdóttir, I., and Zhang, Z., 2015. Changes in sea ice conditions along the Arctic Northeast Passage from 1979 to 2012. Cold Regions Science and Technology, 119: 132–144.

    Article  Google Scholar 

  • Lindsay, R. W., 1998. Temporal variability of the energy balance of thick Arctic Pack Ice. Journal of Climate, 11 (3): 313–333.

    Article  Google Scholar 

  • Lindsay, R. W., Zhang, J., Schweiger, A., Steele, M., and Stern, H., 2009. Arctic sea ice retreat in 2007 follows thinning trend. Journal of Climate, 22 (1): 165–176.

    Article  Google Scholar 

  • Lique, C., 2015. Ocean science: Arctic sea ice heated from below. Nature Geoscience, 8: 172–173.

    Article  Google Scholar 

  • Martin, S., Drucker, R., Kwok, R., and Holt, B., 2004. Estimation of the thin ice thickness and heat flux for the Chukchi Sea Alaskan coast polynya from special sensor microwave/imager data, 1990–2001. Journal of Geophysical Research: Oceans (1978–2012), 109: C10012.

    Article  Google Scholar 

  • Maslanik, J., Fowler, C., Stroeve, J., Drobot, S., Zwally, J., Yi, D., and Emery, W., 2007. A younger, thinner Arctic ice cover: Increased potential for rapid, extensive sea-ice loss. Geophysical Research Letters, 34: L24501.

    Article  Google Scholar 

  • Maslanik, J., Stroeve, J., Fowler, C., and Emery, W., 2011. Distribution and trends in Arctic sea ice age through spring 2011. Geophysical Research Letter, 38 (13): 392–392.

    Article  Google Scholar 

  • Maykut, G. A., 1978. Energy exchange over young sea ice in the central Arctic. Journal of Geophysical Research: Oceans (1978–2012), 83 (C7): 3646–3658.

    Article  Google Scholar 

  • Maykut, G. A., 1982. Large-scale heat exchange and ice production in the central Arctic. Journal of Geophysical Research Atmospheres, 87 (NC10): 7971–7984.

    Article  Google Scholar 

  • Park, D. S. R., Lee, S., and Feldstein, S. B., 2015. Attribution of the recent winter sea ice decline over the Atlantic sector of the Arctic Ocean. Journal of Climate, 28: 4027–4033.

    Article  Google Scholar 

  • Parkinson, C. L., and Washington, W. M., 1979. A large-scale numerical model of sea ice. Journal of Geophysical Research, 84 (C1): 311–337.

    Article  Google Scholar 

  • Peng, G., Meier, W. N., Scott, D. J., and Savoie, M. H., 2013. A long-term and reproducible passive microwave sea ice concentration data record for climate studies and monitoring. Earth System Science Data, 6 (1): 311–318.

    Article  Google Scholar 

  • Perovich, D. K., and Bruce, E., 2002. Estimates of ocean heat flux at SHEBA. Geophysical Research Letters, 29 (9): 58.

    Article  Google Scholar 

  • Perovich, D. K., Grenfell, T. C., Richter-Menge, J. A., Light, B., Tucker, W. B., and Eicken, H., 2003. Thin and thinner: Ice mass balance measurements during SHEBA. Journal of Geophysical Research, 108 (C3), Doi: 10.1029/2001JC00107.

    Google Scholar 

  • Perovich, D. K., Iii, W. B. T., and Krishfield, R. A., 1989. Oceanic heat flux in the Fram Strait measured by a drifting buoy. Geophysical Research Letters, 16 (9): 995–998.

    Article  Google Scholar 

  • Pie, N., Urban, T. J., and Schutz, B. E., 2013. Cross-Validating ICESat-1 and CryoSat-2 using Tide Gauge Measurements. AGU Fall Meeting. San Francisco, USA, 1–4.

    Google Scholar 

  • Polyakov, I. V., Timokhov, L. A., Alexeev, V. A., Bacon, S., Dmitrenko, I. A., Fortier, L., Frolov, I. E., Gascard, J. C., Hansen, E., and Ivanov, V. V,. 2010. Arctic Ocean warming contributes to reduced polar ice cap. Journal of Physical Oceanography, 40 (12): 2743–2756.

    Article  Google Scholar 

  • Rothrock, D., Percival, D., and Wensnahan, M., 2008. The decline in arctic sea-ice thickness: Separating the spatial, annual, and interannual variability in a quarter century of submarine data. Journal of Geophysical Research: Oceans (1978–2012), 113: C05003.

    Article  Google Scholar 

  • Rothrock, D. A., Yu, Y., and Maykut, G. A., 1999. Thinning of the Arctic sea-ice cover. Geophysical Research Letters, 26 (23): 3469–3472.

    Article  Google Scholar 

  • Schweiger, A., Lindsay, R., Zhang, J., Steele, M., Stern, H., and Kwok, R., 2011. Uncertainty in modeled Arctic sea ice volume. Journal of Geophysical Research: Oceans (1978–2012), 116: C00D06.

    Article  Google Scholar 

  • Serreze, M. C., Barrett, A. P., Slater, A. G., Michael, S., Zhang, J., and Trenberth, K. E., 2007a. The large-scale energy budget of the Arctic. Journal of Geophysical Research Atmospheres, 112 (D11): 71–81.

    Article  Google Scholar 

  • Serreze, M. C., Holland, M. M., and Stroeve, J., 2007b. Perspectives on the Arctic’s shrinking sea-ice cover. Science, 315 (5818): 1533–1536.

    Article  Google Scholar 

  • Song, C., Ye, Q., Sheng, Y., and Gong, T., 2015. Combined ICESat and CryoSat-2 altimetry for accessing water level dynamics of Tibetan lakes over 2003–2014. Water, 7: 4685–4700.

    Article  Google Scholar 

  • Steele, M., Ermold, W., and Zhang, J., 2008. Arctic Ocean surface warming trends over the past 100 years. Geophysical Research Letters, 35 (2): L02614.

    Article  Google Scholar 

  • Steele, M., Zhang, J., and Ermold, W., 2010. Mechanisms of summertime upper Arctic Ocean warming and the effect on sea ice melt. Journal of Geophysical Research: Oceans (1978–2012), 115: C11004.

    Article  Google Scholar 

  • Stroeve, J., Barrett, A., Serreze, M., and Schweiger, A., 2014. Using records from submarine, aircraft and satellites to evaluate climate model simulations of Arctic sea ice thickness. Cryosphere, 8 (5): 1839–1854.

    Article  Google Scholar 

  • Tonboe, R. T., Pedersen, L. T., and Haas, C., 2009. Simulation of the satellite radar altimeter sea ice thickness retrieval uncertainty. Canadian Journal of Remote Sensing, 36 (2): 513–559.

    Google Scholar 

  • Untersteiner, N., 1964. Calculations of temperature regime and heat budget of sea ice in the central Arctic. Journal of Geophysical Research Atmospheres, 69 (22): 4755–4766.

    Article  Google Scholar 

  • Wettlaufer, J. S., 1991. Heat flux at the ice-ocean interface. Journal of Geophysical Research Atmospheres, 96 (C4): 7215–7236.

    Article  Google Scholar 

  • Zhang, J., and Rothrock, D. A., 2003. Modeling global sea ice with a thickness and enthalpy distribution model in generalized curvilinear coordinates. Monthly Weather Review, 131 (5): 845–861.

    Article  Google Scholar 

  • Zhang, J., Lindsay, R., Steele, M., and Schweiger, A., 2008. What drove the dramatic retreat of arctic sea ice during summer 2007? Geophysical Research Letters, 35: L11505.

    Article  Google Scholar 

  • Zwally, J., Yi, D., Ron, K., and Zhao, Y., 2008. ICESat measurements of sea ice freeboard and estimates of sea ice thickness in the Weddell Sea. Journal of Geophysical Research Atmospheres, 113: C02S15.

    Article  Google Scholar 

  • Zygmuntowska, M., Rampal, P., Ivanova, N., and Smedsrud, L., 2013. Uncertainties in Arctic sea ice thickness and volume: New estimates and implications for trends. The Cryosphere Discussions, 7: 5051–5095.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the data providers. PIOMAS sea ice thickness data are provided by the Polar Science Center (PSC) in Applied Physics Laboratory (APL) at University of Washington. Snow depth, wind speed, and surface air temperature data are obtained from NCEP/NCAR products.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haibo Bi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, X., Bi, H., Wang, Y. et al. Increasing winter conductive heat transfer in the Arctic sea-ice-covered areas: 1979–2014. J. Ocean Univ. China 16, 1061–1071 (2017). https://doi.org/10.1007/s11802-017-3359-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-017-3359-8

Key words

Navigation